-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOptimal.py
31 lines (26 loc) · 1.18 KB
/
Optimal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from LSM import AmericanOptionsLSMC
import numpy as np
class Optimal(AmericanOptionsLSMC):
""" Class for optimal action.
Inheritance of LSM method - very similar properties.
"""
@property # override
def value_matrix(self):
""" Returns the expected value at each time step and trajectory
Output:
value_matrix [matrix of size M x N, float]: expected value
decision_matrix [matrix of size M x N, bool]: decision
"""
value_matrix = np.zeros_like(self.MCpayoff)
decision_matrix = np.zeros_like(self.MCpayoff)
# Terminal T
value_matrix[-1, :] = self.MCpayoff[-1, :]
decision_matrix[-1, :] = self.MCpayoff[-1, :] > 0
# Recusion from T-1 to 0
for t in range(self.M - 1, -1, -1):
continuation = value_matrix[t + 1, :] * self.discount
value_matrix[t, :] = np.where(self.MCpayoff[t, :] > continuation,
self.MCpayoff[t, :],
continuation)
decision_matrix[t, :] = np.where(self.MCpayoff[t, :] > continuation, 1, 0)
return value_matrix, decision_matrix