-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
92 lines (75 loc) · 2.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from transition import BrownianMotion
from LSM import AmericanOptionsLSMC
from Optimal import Optimal
from utility import *
from LSTM import *
import matplotlib.pyplot as plt
import matplotlib
def test_LSM():
""" American Put LSM method
"""
AmericanPUT = AmericanOptionsLSMC(option_type='put', S0=36, strike=40, T=1, M=50,
r=0.06, div=0, sigma=0.2, N=1000, transition=BrownianMotion)
print('Price for LSM: ', AmericanPUT.price)
def test_Optimal():
""" Optimal action
"""
Opt = Optimal(option_type='put', S0=36, strike=40, T=1, M=50,
r=0.06, div=0, sigma=0.2, N=1000, transition=BrownianMotion)
print('Price for Optimal: ', Opt.price)
def test_traj_gen():
""" Generate trajectories
"""
S0, r, sigma, T, M, N = 36, 0.02, 0.2, 1, 50, 10000
traj_gen = BrownianMotion(S0, r, sigma, T, M, N)
traj1 = traj_gen.simulate()[:,10] # take a look at the 10th trajectory
print(traj1)
# plt.plot(traj1)
# plt.savefig("test.png")
def test_data_gen():
X, S0, r, sigma, T, M, N, transition = 40, 36, 0.06, 0.2, 1, 100, 10, BrownianMotion
data = gen_traj(X, S0, r, sigma, T, M, N, transition)
# print(data.shape)
return data
def test_dataloader():
""" Create dataloader
"""
# Generate data
X, S0, r, sigma, T, M, N, transition = 40, 36, 0.06, 0.2, 1, 100, 10, BrownianMotion
data = gen_traj(X, S0, r, sigma, T, M, N, transition)
# Create dataloader
train_set, test_set = data_load(data, lookback=20)
print(train_set.size(), test_set.size())
def compare():
""" This function compares the simulation trajectory (i.e. stock price under Brownian motion)
and real market price for S&P 500 index.
"""
# Real data
stock_data = pd.read_excel('Data/stock_price.xlsx', skiprows=17, nrows=252, usecols='A:B')
time = stock_data["Exchange Date"].values[::-1]
stock_real = stock_data["Close"].values[::-1]
# Simulated data
S0, r, sigma, T, M, N = stock_real[0], 0.06, 0.2, 1, 365, 10
time_pred = matplotlib.dates.date2num(time[0]) + np.linspace(0, 364, 365)
traj_gen = BrownianMotion(S0, r, sigma, T, M, N)
trajs = traj_gen.simulate()
traj_mean = np.mean( trajs[:-1, :], axis=1 )
traj_std = np.std( trajs[:-1, :], axis=1 )
# Plot to compare
plt.figure()
plt.plot(time_pred, traj_mean, time, stock_real)
plt.legend(["Simulated", "Actual"])
plt.fill_between(time_pred, traj_mean - traj_std, traj_mean + traj_std,
alpha=0.3)
plt.xlabel("Time"); plt.ylabel("S&P 500")
plt.savefig("Plots/sim_vs_real_stock.png")
# Plot simulated trajectories
plt.figure()
plt.plot(time, stock_real)
for i in range(N):
plt.plot(time_pred, trajs[:-1, i])
plt.xlabel("Time"); plt.ylabel("S&P 500")
plt.savefig("Plots/simulated_trajectories.png")
if __name__ == "__main__":
test_LSM()
# test_Optimal()