-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransition.py
52 lines (46 loc) · 2 KB
/
transition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
class BrownianMotion:
''' Brownian Motion (Wiener Process) with optional drift.
Input:
S0 [float]: current value of stock
T [float]: expiration date
M [int]: number of mesh grid in time domain
r [float]: riskfree rate (i.e. similar to discount factor)
sigma [float]: volatility factor in diffusion term
N [int]: number of simulation in MC
'''
def __init__(self, S0, r, sigma0, T, M, N, stochastic_volatility=False):
self.S0 = S0
self.r = r
self.sigma0 = sigma0
if stochastic_volatility:
self.sigmas = [sigma0]
self.T = T
self.M = M
self.N = N
self.time_unit = self.T / float(self.M)
self.stochastic_volatility = stochastic_volatility
def simulate(self, seed=123):
""" Returns MC price matrix rows: time columns: price-path simulation """
np.random.seed(seed)
MCprice_matrix = np.zeros((self.M + 1, self.N), dtype=np.float64)
MCprice_matrix[0,:] = self.S0
for t in range(1, self.M + 1):
brownian = np.random.standard_normal( int(self.N / 2) )
brownian = np.concatenate((brownian, -brownian))
MCprice_matrix[t, :] = (MCprice_matrix[t - 1, :]
* np.exp((self.r - self.get_sigma() ** 2 / 2.) * self.time_unit
+ self.get_sigma() * brownian * np.sqrt(self.time_unit)))
return MCprice_matrix
def get_sigma(self):
if self.stochastic_volatility:
var = self.sigma0 / 5
brownian = np.random.standard_normal(int(self.N / 2))
brownian = np.concatenate((brownian, -brownian))
sigma = (self.sigmas[-1]
* np.exp((var ** 2 / 2.) * self.time_unit
+ var * brownian * np.sqrt(self.time_unit)))
self.sigmas.append(sigma)
return sigma
else:
return self.sigma0