-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualization.py
98 lines (79 loc) · 3.51 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from configparser import Interpolation
from transition import BrownianMotion
from LSM import AmericanOptionsLSMC
from Optimal import Optimal
import numpy as np
import matplotlib.pyplot as plt
def decision2prob_t(stock, decision, interval=1, min_price=0, max_price=0):
""" Convert decision (i.e. continue or exercise) at each stock price into
probability of exercise at time t
"""
# Set min and max bound if not specified
if min_price == 0:
min_price = int(np.floor( min(stock) ))
if max_price == 0:
max_price = int(np.ceil( max(stock) ))
bins = range(min_price, max_price, interval)
probs = np.zeros((len(bins), 1))
for i in range(len(bins)-1):
idx = np.where(np.logical_and(stock >= bins[i], stock < bins[i+1]))
action = decision[idx]
if len(action) == 0:
probs[i] = -1 # invalid
else:
probs[i] = np.count_nonzero(action) / len(action)
return bins, probs
def decision2prob(stock, decision, interval=1, min_price=0, max_price=0):
""" Convert decision (i.e. continue or exercise) at each stock price into
probability of exercise at all time.
Use decision2prob_t as a helper function.
"""
i = 20
bin, prob = decision2prob_t(stock[i, :], decision[i, :], interval=interval,
min_price=min_price, max_price=max_price)
# raise NameError("Debug")
bins, probs = [], []
for i in range(len(stock)): # traverse time step
bin, prob = decision2prob_t(stock[i, :], decision[i, :], interval=interval,
min_price=min_price, max_price=max_price)
bins.append(bin[:-1]); probs.append(prob[:-1])
bins = np.array(bins); probs = np.array(probs)
return bins, probs.squeeze()
def decision_plot(model, fig_name):
""" Can be used to make 2D color plot, x-axis: time, y-axis: stock,
color: prob of exercising. Use decision2prob to compute probs.
"""
value, decision = model.value_matrix
stock = model.MCprice_matrix
min_price, max_price = int(np.floor( np.min(stock) )), int(np.ceil( np.max(stock) ))
# Convert actions into probabilities
bins, probs = decision2prob(stock, decision, min_price=min_price, max_price=max_price)
# Plotting
x = bins[1,:] # stock price
y = np.linspace(0, 365, 51) # time
X, Y = np.meshgrid(x, y)
Z = probs
plt.figure()
plt.contourf(X, Y, Z)
# axs.imshow(interpolation='bilinear')
plt.xlabel("Stock [$]"); plt.ylabel("Time [day]")
plt.set_cmap('jet'); plt.colorbar()
plt.savefig(fig_name)
def visualize():
<<<<<<< Updated upstream
# LSM
lsm = AmericanOptionsLSMC(option_type='put', S0=36, strike=40, T=1, M=50,
r=0.06, div=0, sigma=0.2, N=100000, transition=BrownianMotion, stochastic_volatility=True)
decision_plot(lsm, fig_name="Plots/LSM_decision.png")
=======
# # LSM
# lsm = AmericanOptionsLSMC(option_type='put', S0=36, strike=40, T=1, M=50,
# r=0.06, div=0, sigma=0.2, N=10000, transition=BrownianMotion)
# decision_plot(lsm, fig_name="Plots/test.png")
>>>>>>> Stashed changes
# Optimal
optimal = Optimal(option_type='put', S0=36, strike=40, T=1, M=50,
r=0.06, div=0, sigma=0.2, N=100000, transition=BrownianMotion, stochastic_volatility=True)
decision_plot(optimal, fig_name="Plots/optimal_decision.png")
if __name__ == "__main__":
visualize()