-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_transformer.py
281 lines (233 loc) · 9.17 KB
/
eval_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import pdb
import json
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import torch
from model.transformer import Transformer, TransformerDecoder, EncoderDecoder
from dynamics import get_dataloader
from eval import visualize_params_with_labels
# seed
seed_value = 42
import random
random.seed(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_embeddings(model, dataloader, device, mode='encoder'):
"""
Collect model embeddings and gt system parameters.
Args:
- model: model to probe
- dataloader: dataloader to run model on
Returns:
- X: embeddings
- y: ground truth system parameters
"""
mean, std = 0.0004, 0.6515
model.eval()
y, X = [], []
for _, (W, _, trajectories) in enumerate(dataloader):
W = W.to(device)
trajectories = trajectories.to(device)
batch_size, sample_size, time_size, state_size = trajectories.shape
data = trajectories.view(-1, time_size, state_size)
data = (data - mean) / std
# Run model - not sure why torch.no_grad() would lead to nan results, need to partition to fit in memory
num_partition = 10
data = torch.chunk(data, num_partition, dim=0)
embedding_list = []
for i in range(num_partition):
if mode=='encoder-decoder':
embedding = model.encoder(data[i][:, :50, :]).detach() # only use first 50 steps b/c the model is used to seeing only ~50 steps
else:
embedding = model(data[i]).detach()
embedding_list.append(embedding)
embedding = torch.cat(embedding_list, dim=0)
embedding = embedding[:, 0, :]
W = W[:, 2:].repeat_interleave(sample_size, dim=0)
X.append(embedding)
y.append(W)
# Add columns of ones for bias term
X = torch.cat(X, dim=0)
ones = torch.ones(X.shape[0], 1).to(device)
X = torch.cat((X, ones), dim=1)
y = torch.cat(y, dim=0)
return X, y
def solve(X, Y):
"""
Optimize a linear layer to map hidden vectors to parameters.
"""
linear_layer = torch.linalg.lstsq(X, Y).solution
return linear_layer
def evaluate_transformer(
model,
ckpt_path="./ckpts/model_1000.pt",
train_data_path="./data/train_data.pickle",
val_data_path="./data/val_data.pickle",
mode='encoder',
log_result=False,
):
"""Evaluate the model embeddings using linear probe to system parameters."""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model
model.to(device)
model.eval()
model.load_state_dict(torch.load(ckpt_path, map_location=device))
# Get linear probe layer from training data
dataloader = get_dataloader(batch_size=32, data_path=train_data_path, num_workers=4, shuffle=False)
x_train, y_train = get_embeddings(model, dataloader, device, mode=mode)
linear_layer = solve(x_train, y_train)
# Evaluate on training data
pred_y_train = torch.mm(x_train, linear_layer)
mae_train = torch.mean(torch.abs(pred_y_train - y_train), dim=0)
mae_train = mae_train.cpu().numpy()
# Evaluate on validation data
dataloader = get_dataloader(batch_size=32, data_path=val_data_path, num_workers=4, shuffle=False)
x_val, y_val = get_embeddings(model, dataloader, device, mode=mode)
pred_y_val = torch.mm(x_val, linear_layer)
mae_val = torch.mean(torch.abs(pred_y_val - y_val), dim=0)
mae_val = mae_val.cpu().numpy()
# Log results
if log_result:
print("MAE Train:", mae_train.mean())
print("MAE Val:", mae_val.mean())
# Visualization
labels = [",".join(map(str, row)) for row in y_val.cpu().numpy()]
visualize_params_with_labels(pred_y_val.cpu(), y_val.cpu(), labels, "Transformer")
return mae_train, mae_val
def get_trajectories(model, dataloader, device, max_T, mode='decoder', num_pt_enc=30):
"""
Collect model predicted and gt trajectories.
Args:
- model: model to probe
- dataloader: dataloader to run model on
Returns:
- pred_traj: predicted trajectories
- gt_traj: ground truth trajectories
"""
mean, std = 0.0004, 0.6515
model.eval()
pred_traj, gt_traj = [], []
for _, (W, _, trajectories) in enumerate(dataloader):
# Get gt trajectories
W = W.to(device)
trajectories = trajectories.to(device)
batch_size, sample_size, time_size, state_size = trajectories.shape
data = trajectories.view(-1, time_size, state_size)
gt_traj.append(data)
# Get predicted trajectories
initial_point = (data[:, :num_pt_enc, :] - mean) / std
if mode == 'encoder-decoder':
enc_emb = model.encoder(initial_point)
out = model.decoder.generate(initial_point[:, -5:, :], max_T-num_pt_enc+1, enc_emb).detach()
out = torch.cat([initial_point, out[:, 5:, :]], dim=1)
else:
out = model.generate(initial_point, max_T-num_pt_enc+1).detach()
pred_traj.append(out)
# Concatenate
pred_traj = torch.cat(pred_traj, dim=0)
pred_traj = (pred_traj * std) + mean
gt_traj = torch.cat(gt_traj, dim=0)
return pred_traj, gt_traj
def visualize_trajectory(
model,
ckpt_path="./ckpts/model_1000.pt", val_data_path="./data/val_data.pickle",
idx=0,
mode='decoder',
num_pt_enc=30,
log_result=True
):
"""Analytically optimize a linear layer to map hidden vectors to parameters."""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model
model.to(device)
model.eval()
model.load_state_dict(torch.load(ckpt_path, map_location=device))
# Load data
dataloader = get_dataloader(batch_size=32, data_path=val_data_path, num_workers=4, shuffle=False)
pred_traj, gt_traj = get_trajectories(model, dataloader, device, max_T=99, mode=mode)
pred_traj = pred_traj.cpu().numpy()
gt_traj = gt_traj.cpu().numpy()
mae = np.mean(np.abs(pred_traj - gt_traj))
if log_result:
print("MAE:", mae)
fig, axs = plt.subplots(2, 1, figsize=(10, 10))
times = np.arange(100)
gt_traj = gt_traj[idx]
pred_traj = pred_traj[idx]
# Displacement subplot
axs[0].plot(times, gt_traj[:, 0], label="x1 (m1 displacement)")
axs[0].plot(times, gt_traj[:, 1], label="x2 (m2 displacement)")
axs[0].plot(times, pred_traj[:, 0], label="x1 (pred)")
axs[0].plot(times, pred_traj[:, 1], label="x2 (pred)")
axs[0].set_xlabel("Time")
axs[0].set_ylabel("Displacement")
axs[0].legend()
axs[0].grid(True)
axs[0].set_title("MAE = {:.4f}".format(mae))
# Velocity subplot
axs[1].plot(times, gt_traj[:, 2], label="x1_dot (m1 velocity)")
axs[1].plot(times, gt_traj[:, 3], label="x2_dot (m2 velocity)")
axs[1].plot(times, pred_traj[:, 2], label="x1_dot (pred)")
axs[1].plot(times, pred_traj[:, 3], label="x2_dot (pred)")
axs[1].set_xlabel("Time")
axs[1].set_ylabel("Velocity")
axs[1].legend()
axs[1].grid(True)
plt.tight_layout()
plt.savefig(f'./traj_transformer.png')
return mae
if __name__ == "__main__":
mode = 'encoder-decoder'
# Set config file
if mode == 'encoder':
config_file = "./configs/transformer_encoder_config.json"
elif mode == 'decoder':
config_file = "./configs/transformer_decoder_config.json"
elif mode == 'encoder-decoder':
config_file = "./configs/transformer_encoder_decoder_config.json"
else:
raise ValueError("Invalid mode")
# Load config parameters
with open(config_file, "r") as f:
config = json.load(f)
d_input = config['d_input']
d_model = config['d_model']
d_linear = config['d_linear']
num_heads = config['num_heads']
dropout = config['dropout']
num_layers = config['num_layers']
# Create model
if mode == 'encoder':
model = Transformer(d_input, d_model, d_linear, num_heads, dropout, num_layers)
elif mode == 'decoder':
model = TransformerDecoder(d_input, d_model, d_linear, num_heads, dropout, num_layers)
elif mode == 'encoder-decoder':
encoder = Transformer(d_input, d_model, d_linear, num_heads, dropout, num_layers)
decoder = TransformerDecoder(d_input, d_model, d_linear, num_heads, dropout, num_layers)
model = EncoderDecoder(encoder, decoder)
# Evaluate model
evaluate_transformer(
model,
ckpt_path="./ckpts/enc_dec_best.pt",
train_data_path="./data/train_data.pickle",
val_data_path="./data/val_data.pickle",
mode='encoder-decoder',
log_result=True,
)
# Visualize trajectory
visualize_trajectory(
model,
ckpt_path="./ckpts/enc_dec_best.pt",
val_data_path="./data/val_data.pickle",
idx=0,
mode='encoder-decoder',
num_pt_enc=30,
log_result=True
)