-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_transformer.py
260 lines (217 loc) · 9.79 KB
/
train_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import pdb
import json
import tqdm
import numpy as np
import wandb
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from info_nce import InfoNCE
from model.transformer import Transformer, TransformerDecoder, EncoderDecoder
from dynamics import get_dataloader
from eval_transformer import evaluate_transformer, visualize_trajectory
def train_transformer(config=None):
# Determine if we are doing hyperparameter search
if config is None:
wandb.init(config=config, project="contr_transformer", entity="contrastive-time-series")
config = wandb.config
log_to_wandb = config['log_to_wandb']
# Determine if we are loggin
if log_to_wandb:
wandb.init(config=config, project="contr_transformer", entity="contrastive-time-series")
# Hyperparameter
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
lr = config['learning_rate']
num_epochs = config['num_epochs']
batch_size = config['batch_size']
d_input = config['d_input']
d_model = config['d_model']
d_linear = config['d_linear']
num_heads = config['num_heads']
dropout = config['dropout']
num_layers = config['num_layers']
mode = config['mode']
# Load model
if mode == 'encoder':
model = Transformer(d_input, d_model, d_linear, num_heads, dropout, num_layers).to(device)
elif mode == 'decoder' or mode == 'decoder-contrastive':
model = TransformerDecoder(d_input, d_model, d_linear, num_heads, dropout, num_layers).to(device)
elif mode == 'encoder-decoder':
encoder = Transformer(d_input, d_model, d_linear, num_heads, dropout, num_layers).to(device)
decoder = TransformerDecoder(d_input, d_model, d_linear, num_heads, dropout, num_layers).to(device)
model = EncoderDecoder(encoder, decoder).to(device)
else:
raise ValueError("Invalid mode")
model.train()
# model.load_state_dict(torch.load("./ckpts/framework1_best_2000.pt"))
optimizer = optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=num_epochs, T_mult=1, eta_min=1e-4)
dataloader = get_dataloader(batch_size=32, data_path="./data/train_data.pickle", num_workers=8)
mean, std = 0.0004, 0.6515
for epoch in tqdm.tqdm(range(num_epochs)):
total_loss = 0.0
for i, (W, times, trajectories) in enumerate(dataloader):
optimizer.zero_grad()
# Get data
trajectories = trajectories.to(device)
trajectories = (trajectories - mean) / std
batch_size, sample_size, time_size, state_size = trajectories.shape
# Subsample
indices = torch.randint(0, time_size, (batch_size, 2))
batch_indices = torch.arange(25).view(-1, 1).expand(-1, 2)
data = trajectories[batch_indices, indices, :]
# Forward pass
data = data.view(-1, time_size, state_size)
if mode == "encoder": # Compute contrastive loss
emb = model(data)
loss = contrastive_loss(emb, batch_size)
elif mode == "decoder": # Compute regression loss
# Get predicted next steps
emb = model(data)
emb = emb[:, 1:-1, :]
out = model.pred_next_step(emb)
# Compute regression loss on predicted next steps
loss = regression_loss(out, data)
# Compute regression loss on predict full trajectory
out = model.generate(data[:, 0:1, :], time_size-1)
out = out[:, 1:, :] # exclude the inital point
loss += regression_loss(out, data)
elif mode == "decoder-contrastive": # Compute contrastive loss + regression loss
emb = model(data)
emb = emb[:, 1:-1, :]
out = model.pred_next_step(emb)
loss = contrastive_loss(emb, batch_size) + regression_loss(out, data)
elif mode == "encoder-decoder": # Compute contrastive loss + regression loss
loss_contr, loss_next_step, loss_traj = 0, 0, 0
idx = torch.randint(int(time_size/4), int(time_size/4*3), (1,))
enc_emb, dec_emb = model(data, idx)
# Compute contrastive loss
loss_contr = contrastive_loss(enc_emb, batch_size)
# Compute regression loss on predicted next steps
emb = dec_emb[:, 1:-1, :]
out = model.decoder.pred_next_step(emb)
loss_next_step = regression_loss(out, data[:, idx:, :])
# Compute regression loss on predict full trajectory
out = model.decoder.generate(data[:, idx-5:idx, :], time_size-idx-1, enc_emb)
out = out[:, 5:, :] # exclude the inital point
loss_traj = regression_loss(out, data[:, idx:, :])
loss = loss_contr + loss_next_step + loss_traj
# Backward pass
loss.backward()
optimizer.step()
scheduler.step()
# Logging
total_loss += loss.item()
# Log
if epoch % 100 == 0:
print("Epoch: {}, Loss: {}".format(epoch, total_loss / len(dataloader)))
# Log metrics to wandb
if log_to_wandb:
wandb.log({"epoch": epoch, "total_loss": total_loss})
# Save model
if (epoch+1) % 100 == 0:
model_path = f"./ckpts/model_{epoch+1}.pt"
torch.save(model.state_dict(), model_path)
wandb.save(model_path) if log_to_wandb else None
# Log metrics
if mode == "encoder":
train_mae, val_mae = evaluate_transformer(
model, ckpt_path=model_path
)
print("MAE (params) on the training set: ", train_mae.mean())
wandb.log({"train_mae": train_mae.mean().item()}) if log_to_wandb else None
elif mode == "decoder" or mode == "decoder-contrastive":
traj_val_mae = visualize_trajectory(
model, ckpt_path=model_path,
val_data_path="./data/val_data.pickle",
log_result=False
)
print("MAE (trajectories) on the validation set: ", traj_val_mae)
wandb.log({"val_traj_mae": traj_val_mae}) if log_to_wandb else None
elif mode == "encoder-decoder":
train_mae, val_mae = evaluate_transformer(
model, ckpt_path=model_path, mode="encoder-decoder"
)
print("MAE (params) on the training set: ", train_mae.mean())
traj_val_mae = visualize_trajectory(
model, ckpt_path=model_path,
val_data_path="./data/val_data.pickle",
mode="encoder-decoder",
log_result=False
)
print("MAE (trajectories) on the validation set: ", traj_val_mae)
wandb.log({
"train_mae": train_mae.mean().item(),
"val_traj_mae": traj_val_mae
}) if log_to_wandb else None
def contrastive_loss(emb, batch_size):
"""Compute contrastive loss for a batch of embeddings from transformer encoder."""
# Define loss function
loss_fn = InfoNCE()
# Separate positive and negative samples
emb = emb[:, 0, :]
emb = emb.view(batch_size, 2, -1)
sample1 = emb[:, 0, :]
sample2 = emb[:, 1, :]
# Compute contrastive loss
sample1 = sample1 / torch.norm(sample1, dim=1, keepdim=True)
sample2 = sample2 / torch.norm(sample2, dim=1, keepdim=True)
loss = loss_fn(sample1, sample2)
return loss
def regression_loss(out, data):
"""Compute regression loss for a batch of embeddings from transformer decoder."""
# Define loss function
loss_fn = nn.MSELoss()
# Get gt next steps
y = data[:, 1:, :]
# Compute regression loss
loss = loss_fn(out, y)
return loss
def transformer_hyperparam_search():
sweep_config = {
'method': 'random',
'metric': {'name': 'loss', 'goal': 'minimize'},
'parameters': {
'learning_rate': {
'distribution': 'log_uniform',
'min': np.log(1e-4),
'max': np.log(1e-2)
},
'num_epochs': {'values': [3000]},
'batch_size': {'values': [32]},
'd_input': {'values': [4]},
'd_model': {'values': [32, 64, 128, 256]},
'd_linear': {'values': [16, 32, 64, 128, 256]},
'num_heads': {'values': [4, 8]},
'dropout': {'values': [0.1, 0.2, 0.4]},
'num_layers': {'values': [2, 6, 10]},
'mode': {'values': ['decoder']},
'log_to_wandb': {'values': [True]}
}
}
sweep_id = wandb.sweep(sweep_config, project="contr_transformer", entity="contrastive-time-series")
wandb.agent(sweep_id, train_transformer, count=20)
if __name__ == "__main__":
# # Train single run
# # Define hyperparameters
# default_config = {
# 'learning_rate': 0.00013,
# 'num_epochs': 5000,
# 'batch_size': 32,
# 'd_input': 4,
# 'd_model': 256,
# 'd_linear': 64,
# 'num_heads': 4,
# 'dropout': 0.2,
# 'num_layers': 4,
# 'log_to_wandb': False,
# 'mode': 'decoder-contrastive'
# }
# Or load from config file
config_file = "./configs/transformer_encoder_decoder_config.json"
with open(config_file, "r") as f:
default_config = json.load(f)
train_transformer(default_config)
# # Hyperparameter search
# transformer_hyperparam_search()