-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrobust_shortest_path.py
297 lines (219 loc) · 9.38 KB
/
robust_shortest_path.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
'''
********************************************************
* The model shows a Benders Decomposition for a stochasitic programming coffee machine management problem.*
* The original MIP is decomposed into two problems. *
* The subproblem is using the dual formulation. *
* For consistency, this is built using an equivalent AMPL model coffee.run *
#********************************************************
'''
from gurobipy import *
#from pygraphviz import *
#import math
from decimal import *
import copy
import random
import numpy as np
import sys
class RSP:
def __init__(self, N, s, t, l, u):
# upper and lower bound on the arc length, square matrix of size N
self.N = N
self.u = u
self.l = l
self.s = s # Source node
self.t = t # Destination node
self.sm = Model('SubProblem')
self.sm.setParam( 'OutputFlag', 0 )
self.sm.setParam( 'LogToConsole', 0 )
self.sm.setParam( 'LogFile', "" )
self.sm.params.threads = 1
self.sm.params.NodefileStart = 0.5
self.sm.params.timeLimit = 1800
self.sm.params.DualReductions = 0 #turn off to avoid the optimization status of INF_OR_UNBD
self.sm.params.InfUnbdInfo = 1 #Additional info for infeasible/unbounded models
self.sm.ModelSense = -1 #sub problem is a maximization problem
self.mm = Model('MasterProblem')
self.mm.setParam( 'OutputFlag', 0 )
self.mm.setParam( 'LogToConsole', 0 )
self.mm.setParam( 'LogFile', "" )
self.mm.params.threads = 1
self.mm.params.NodefileStart = 0.5
self.mm.params.timeLimit = 1800
self.mm.params.DualReductions = 0 #turn off to avoid the optimization status of INF_OR_UNBD
self.mm.params.InfUnbdInfo = 1 #Additional info for infeasible/unbounded models
def Sub_problem(self, Y):
# Generate the sub problem dual problem
self.w = {}
self.sm.reset()
for v in self.sm.getVars():
self.sm.remove(v)
for c in self.sm.getConstrs():
self.sm.remove(c)
for i in range(self.N):
for j in range(self.N):
self.w[i,j] = self.sm.addVar(name='w_%s_%s' % (i, j), obj = -(self.l[i][j] + (self.u[i][j] - self.l[i][j]) * Y[i,j]), lb = 0, ub = 1)
self.sm.update()
for j in range(self.N):
if j == self.s: # source node flux = -1
self.sm.addConstr(sum(self.w[j,k] for k in range(self.N)) -
sum(self.w[i,j] for i in range(self.N)) == 1)
elif j == self.t: # destination node flux = -1
self.sm.addConstr(sum(self.w[j,k] for k in range(self.N)) -
sum(self.w[i,j] for i in range(self.N)) == -1)
else: # intermediate node flux = 0
self.sm.addConstr(sum(self.w[j,k] for k in range(self.N)) -
sum(self.w[i,j] for i in range(self.N)) == 0)
self.sm.update()
def Master_problem(self, nCut, cut_type, w_c_k, c_m_k):
#Generate the Master Problem
self.mm.reset()
for v in self.mm.getVars():
self.mm.remove(v)
for c in self.mm.getConstrs():
self.mm.remove(c)
self.y = {}
for i in range(self.N):
for j in range(self.N):
self.y[i,j] = self.mm.addVar(name='y_%s_%s' % (i, j),
obj = 0, vtype=GRB.BINARY)
self.z = self.mm.addVar(name ='z', obj = 1)
self.mm.update()
# For each cut found through the subproblem
for k in range(1, nCut+1):
if cut_type[k] == "point":
self.mm.addConstr(self.z >= sum(self.u[i][j]*self.y[i,j]
for i in range(self.N) for j in range(self.N))
- sum((self.l[i][j]+(self.u[i][j]-self.l[i][j])*self.y[i,j])*w_c_k[i,j,k]
for i in range(self.N) for j in range(self.N)))
# Constraints based on node flux
for j in range(self.N):
if j == self.s: # source node flux = -1
self.mm.addConstr(sum(self.y[j,k] for k in range(self.N)) -
sum(self.y[i,j] for i in range(self.N)) == 1)
elif j == self.t: # destination node flux = -1
self.mm.addConstr(sum(self.y[j,k] for k in range(self.N)) -
sum(self.y[i,j] for i in range(self.N)) == -1)
else: # intermediate node flux = 0
self.mm.addConstr(sum(self.y[j,k] for k in range(self.N)) -
sum(self.y[i,j] for i in range(self.N)) == 0)
# Constraints to prevent self loop
for i in range(self.N):
self.mm.addConstr(self.y[i,i] == 0)
self.mm.update()
def Benders_decomposition():
s = 0
t = 4
# set seed to get consistent/comparable results
np.random.seed(1234)
N = 100 # number of nodes in the graph
M = 10000 # a very large number
# Generate lower bound and upper bound
# The graph should be directed because for traffic simulation
# time from i to j could be vastly different than time from j to i
l = np.random.randint(low=1, high=10, size=(N,N))
u = np.random.randint(low=20, high=30, size=(N,N))
# Diaganol should be 0 as it represent a self loop for a node
for i in range(N):
l[i][i] = 0
u[i][i] = 0
# The graph may not be fully connected, thus, should delete some path
# Say the graph is 50% fully connected, set the weight of 50% of the
# path to a very large number M.
# The degree of connectivity in the graph is an adjustable parameter
dummy = np.random.randint(low=0, high=10, size=(N,N)) # matrix of 0 and 1
# For dummy = 1, keep path; otherwise, delete (set weight = M)
for i in range(N):
for j in range(N):
if dummy[i][j] != 0:
l[i][j] = M
u[i][j] = M
print('visualize the graph')
print('lower bound: \n')
print(l)
print('\n')
print('upper bound: \n')
print(u)
print('\n')
CMMP = RSP(N, s, t, l, u)
#initialization
nCut = 0
z = -100
Y = {}
for i in range(N):
for j in range(N):
Y[i,j] = 0
gap = float('inf')
cut_type = {}
w = {}
w_c_k = {}
#Benders decomposition procedure
while True:
# print ("\n Iteration %s") % (nCut + 1)
#create subproblems
CMMP.Sub_problem(Y)
try:
CMMP.sm.optimize()
if CMMP.sm.status == 5:
print ("Unbounded")
break
elif CMMP.sm.status == 2 or CMMP.sm.status == 9:
dual_cost = CMMP.sm.ObjVal + sum(u[i][j]*Y[i,j] for i in range(N) for j in range(N))
gap = min(gap, dual_cost - z)
print(dual_cost, z)
if dual_cost <= z + 0.00001:
break
nCut += 1
cut_type[nCut] = "point"
for i in range(N):
for j in range(N):
w[i, j] = CMMP.sm.getVarByName('w_%s_%s' % (i, j))
#get the unboundedness direction of the variable and add cuts
for i in range(N):
for j in range(N):
w_c_k[i, j, nCut] = w[i, j].x #CMMP.sm.getAttr('x', lambda_c[i, j])
except:
print ("Sub problem solve error")
break
print ("Re-solve Master Problem")
c_m_k = []
for i in range(N):
for j in range(N):
for k in range(1, nCut+1):
c_m_k.append((i, j, k))
c_m_k = tuplelist(c_m_k)
#create master roblems
CMMP.Master_problem(nCut, cut_type, w_c_k, c_m_k)
try:
CMMP.mm.optimize()
for i in range(N):
for j in range(N):
Y[i,j] = int(CMMP.mm.getVarByName('y_%s_%s' % (i, j)).x)
z = CMMP.mm.getVarByName('z').x
print('Matrix Y: ')
print(print_Y(Y,N))
print('\n')
print('Matrix w: ')
print(print_w(w,N))
print('\n')
print('z = ', z)
print('\n')
print('dual_cost = ', dual_cost)
except:
print ("Master problem error")
break
print(Y)
# Functions for debugging
def print_Y(Y, N):
matrix = np.zeros([N,N])
for i in range(N):
for j in range(N):
matrix[i][j] = Y[i,j]
return matrix
def print_w(w,N):
matrix = np.zeros([N,N])
for i in range(N):
for j in range(N):
matrix[i][j] = w[i,j].x
return matrix
if __name__ == '__main__':
Benders_decomposition()