@@ -2061,8 +2061,8 @@ To ensure the functionality of Biblioshiny,
2061
2061
output $ AffOverTimeTable <- DT :: renderDT({
2062
2062
2063
2063
AFFGrowth()
2064
- afftimeData = values $ AffOverTime
2065
- DTformat(afftimeDATA , nrow = 10 , filename = " Affiliation_over_Time" , pagelength = TRUE , left = NULL , right = NULL , numeric = NULL , dom = FALSE ,
2064
+ afftimeData <- values $ AffOverTime
2065
+ DTformat(afftimeData , nrow = 10 , filename = " Affiliation_over_Time" , pagelength = TRUE , left = NULL , right = NULL , numeric = NULL , dom = FALSE ,
2066
2066
size = ' 100%' , filter = " none" , columnShort = NULL , columnSmall = NULL , round = 3 , title = " " , button = TRUE , escape = FALSE ,
2067
2067
selection = FALSE )
2068
2068
})
@@ -2351,6 +2351,7 @@ To ensure the functionality of Biblioshiny,
2351
2351
xx <- values $ TABGlobDoc %> % select(1 ,3 )
2352
2352
lab = " Global Citations" } else {
2353
2353
xx <- values $ TABGlobDoc %> % select(1 ,4 )
2354
+ xx [,2 ] <- round(xx [,2 ],1 )
2354
2355
lab = " Global Citations per Year"
2355
2356
}
2356
2357
@@ -3416,6 +3417,8 @@ To ensure the functionality of Biblioshiny,
3416
3417
3417
3418
CSfactorial <- eventReactive(input $ applyCA ,{
3418
3419
values <- CAmap(input ,values )
3420
+ values $ plotCS <- ca2plotly(values $ CS , method = input $ method ,dimX = 1 , dimY = 2 , topWordPlot = Inf , threshold = 0.05 , labelsize = input $ CSlabelsize * 2 , size = input $ CSlabelsize * 1.5 )
3421
+ values $ dendCS <- dend2vis(values $ CS $ km.res , labelsize = input $ CSlabelsize , nclusters = as.numeric(input $ nClustersCS ), community = FALSE )
3419
3422
})
3420
3423
3421
3424
output $ FAplot.save <- downloadHandler(
@@ -3445,13 +3448,14 @@ To ensure the functionality of Biblioshiny,
3445
3448
CSfactorial()
3446
3449
# CS=values$CS
3447
3450
# save(CS,file="provaCS.rdata")
3448
- values $ plotCS <- ca2plotly(values $ CS , method = input $ method ,dimX = 1 , dimY = 2 , topWordPlot = Inf , threshold = 0.05 , labelsize = input $ CSlabelsize * 2 , size = input $ CSlabelsize * 1.5 )
3451
+ values $ plotCS # <- ca2plotly(values$CS, method=input$method ,dimX = 1, dimY = 2, topWordPlot = Inf, threshold=0.05, labelsize = input$CSlabelsize*2, size=input$CSlabelsize*1.5)
3449
3452
})
3450
3453
3451
3454
3452
3455
output $ CSPlot4 <- renderVisNetwork({
3453
3456
CSfactorial()
3454
- dend2vis(values $ CS $ km.res , labelsize = input $ CSlabelsize , nclusters = as.numeric(input $ nClustersCS ), community = FALSE )
3457
+ # dend2vis(values$CS$km.res, labelsize=input$CSlabelsize, nclusters=as.numeric(input$nClustersCS), community=FALSE)
3458
+ values $ dendCS
3455
3459
# values$CS$graph_dendogram)
3456
3460
})
3457
3461
@@ -3736,7 +3740,7 @@ To ensure the functionality of Biblioshiny,
3736
3740
validate(
3737
3741
need(values $ nexus $ check != FALSE , " \n\n No topics in one or more periods. Please select a different set of parameters." )
3738
3742
)
3739
- for (i in 1 : length(values $ yearSlices )){
3743
+ for (i in 1 : ( length(values $ yearSlices ) + 1 )){
3740
3744
values $ nexus $ TM [[i ]]$ words <- values $ nexus $ TM [[i ]]$ words [,- c(4 ,6 )]
3741
3745
values $ nexus $ TM [[i ]]$ clusters <- values $ nexus $ TM [[i ]]$ clusters [,c(9 ,5 : 8 ,11 )]
3742
3746
names(values $ nexus $ TM [[i ]]$ clusters ) <- c(" Cluster" , " CallonCentrality" ," CallonDensity" ," RankCentrality" ," RankDensity" ," ClusterFrequency" )
@@ -4149,7 +4153,7 @@ To ensure the functionality of Biblioshiny,
4149
4153
})
4150
4154
4151
4155
output $ histTable <- DT :: renderDT({
4152
-
4156
+ g <- Hist()
4153
4157
Data <- values $ histResults $ histData
4154
4158
DTformat(Data , nrow = 10 , filename = " Historiograph_Network" , pagelength = TRUE , left = NULL , right = NULL , numeric = NULL , dom = TRUE ,
4155
4159
size = ' 100%' , filter = " top" , columnShort = NULL , columnSmall = NULL , round = 3 , title = " " , button = TRUE , escape = FALSE ,
0 commit comments