-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathring.v
714 lines (640 loc) · 29.1 KB
/
ring.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
From Coq Require Import ZArith ZifyClasses Ring Ring_polynom Field_theory.
From elpi Require Export elpi.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq.
From mathcomp Require Import fintype finfun bigop order ssralg ssrnum ssrint.
From mathcomp Require Import ssrZ zify.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory.
Local Open Scope ring_scope.
Module Import Internals.
Implicit Types (V : zmodType) (R : ringType) (F : fieldType).
(* In reified syntax trees, constants must be represented by binary integers *)
(* `N` and `Z`. For the fine-grained control of conversion, we provide *)
(* transparent (immediately expanding) versions of `N -> nat` and `Z -> int` *)
(* conversions. *)
Definition addn_expand := Eval compute in addn.
Fixpoint nat_of_pos_rec_expand (p : positive) (a : nat) : nat :=
match p with
| p0~1 => addn_expand a (nat_of_pos_rec_expand p0 (addn_expand a a))
| p0~0 => nat_of_pos_rec_expand p0 (addn_expand a a)
| 1 => a
end%positive.
Definition nat_of_pos_expand (p : positive) : nat := nat_of_pos_rec_expand p 1.
Definition nat_of_N_expand (n : N) : nat :=
if n is N.pos p then nat_of_pos_expand p else 0%N.
Definition int_of_Z_expand (n : Z) : int :=
match n with
| Z0 => Posz 0
| Zpos p => Posz (nat_of_pos_expand p)
| Zneg p => Negz (nat_of_pos_expand p).-1
end.
Lemma nat_of_N_expandE : nat_of_N_expand = nat_of_N. Proof. by []. Qed.
Lemma int_of_Z_expandE : int_of_Z_expand = int_of_Z. Proof. by []. Qed.
(* Pushing down morphisms in ring and field expressions by reflection *)
Inductive NExpr : Type :=
| NC of N
| NX of nat
| NAdd of NExpr & NExpr
| NSucc of NExpr
| NMul of NExpr & NExpr
| NExp of NExpr & N.
Fixpoint Neval (e : NExpr) : nat :=
match e with
| NC n => nat_of_N_expand n
| NX x => x
| NAdd e1 e2 => Neval e1 + Neval e2
| NSucc e => S (Neval e)
| NMul e1 e2 => Neval e1 * Neval e2
| NExp e1 n => Neval e1 ^ nat_of_N_expand n
end.
Inductive RExpr : ringType -> Type :=
| RX R : R -> RExpr R
| R0 R : RExpr R
| ROpp R : RExpr R -> RExpr R
| RZOpp : RExpr [ringType of Z] -> RExpr [ringType of Z]
| RAdd R : RExpr R -> RExpr R -> RExpr R
| RZAdd : RExpr [ringType of Z] -> RExpr [ringType of Z] ->
RExpr [ringType of Z]
| RZSub : RExpr [ringType of Z] -> RExpr [ringType of Z] ->
RExpr [ringType of Z]
| RMuln R : RExpr R -> NExpr -> RExpr R
| RMulz R : RExpr R -> RExpr [ringType of int] -> RExpr R
| R1 R : RExpr R
| RMul R : RExpr R -> RExpr R -> RExpr R
| RZMul : RExpr [ringType of Z] -> RExpr [ringType of Z] ->
RExpr [ringType of Z]
| RExpn R : RExpr R -> N -> RExpr R
| RExpPosz (R : unitRingType) : RExpr R -> N -> RExpr R
| RExpNegz F : RExpr F -> N -> RExpr F
| RZExp : RExpr [ringType of Z] -> Z -> RExpr [ringType of Z]
| RInv F : RExpr F -> RExpr F
| RMorph R' R : {rmorphism R' -> R} -> RExpr R' -> RExpr R
| RMorph' V R : {additive V -> R} -> ZMExpr V -> RExpr R
| RPosz : NExpr -> RExpr [ringType of int]
| RNegz : NExpr -> RExpr [ringType of int]
| RZC : Z -> RExpr [ringType of Z]
with ZMExpr : zmodType -> Type :=
| ZMX V : V -> ZMExpr V
| ZM0 V : ZMExpr V
| ZMOpp V : ZMExpr V -> ZMExpr V
| ZMAdd V : ZMExpr V -> ZMExpr V -> ZMExpr V
| ZMMuln V : ZMExpr V -> NExpr -> ZMExpr V
| ZMMulz V : ZMExpr V -> RExpr [ringType of int] -> ZMExpr V
| ZMMorph V' V : {additive V' -> V} -> ZMExpr V' -> ZMExpr V.
Scheme RExpr_ind' := Induction for RExpr Sort Prop
with ZMExpr_ind' := Induction for ZMExpr Sort Prop.
Fixpoint Reval R (e : RExpr R) : R :=
match e with
| RX _ x => x
| R0 _ => 0%R
| ROpp _ e1 => - Reval e1
| RZOpp e1 => Z.opp (Reval e1)
| RAdd _ e1 e2 => Reval e1 + Reval e2
| RZAdd e1 e2 => Z.add (Reval e1) (Reval e2)
| RZSub e1 e2 => Z.sub (Reval e1) (Reval e2)
| RMuln _ e1 e2 => Reval e1 *+ Neval e2
| RMulz _ e1 e2 => Reval e1 *~ Reval e2
| R1 _ => 1%R
| RMul _ e1 e2 => Reval e1 * Reval e2
| RZMul e1 e2 => Z.mul (Reval e1) (Reval e2)
| RExpn _ e1 n => Reval e1 ^+ nat_of_N_expand n
| RExpPosz _ e1 n => Reval e1 ^ Posz (nat_of_N_expand n)
| RExpNegz _ e1 n => Reval e1 ^ Negz (nat_of_N_expand n)
| RZExp e1 n => Z.pow (Reval e1) n
| RInv _ e1 => (Reval e1)^-1
| RMorph _ _ f e1 => f (Reval e1)
| RMorph' _ _ f e1 => f (ZMeval e1)
| RPosz e1 => Posz (Neval e1)
| RNegz e2 => Negz (Neval e2)
| RZC x => x
end
with ZMeval V (e : ZMExpr V) : V :=
match e with
| ZMX _ x => x
| ZM0 _ => 0%R
| ZMOpp _ e1 => - ZMeval e1
| ZMAdd _ e1 e2 => ZMeval e1 + ZMeval e2
| ZMMuln _ e1 e2 => ZMeval e1 *+ Neval e2
| ZMMulz _ e1 e2 => ZMeval e1 *~ Reval e2
| ZMMorph _ _ f e1 => f (ZMeval e1)
end.
Fixpoint interp_RElist
R (lpe : list (RExpr R * RExpr R * PExpr Z * PExpr Z)) : Prop :=
if lpe is (lhs, rhs, _, _) :: lpe then
Reval lhs = Reval rhs /\ interp_RElist lpe else True.
Section Rnorm.
Variables (R' : ringType).
Variables (R_of_Z : Z -> R') (R_of_ZE : R_of_Z = (fun n => (int_of_Z n)%:~R)).
Variables (zero : R') (zeroE : zero = 0%R) (opp : R' -> R') (oppE : opp = -%R).
Variables (add : R' -> R' -> R') (addE : add = +%R).
Variables (sub : R' -> R' -> R') (subE : sub = (fun x y => x - y)).
Variables (one : R') (oneE : one = 1%R).
Variables (mul : R' -> R' -> R') (mulE : mul = *%R).
Variables (exp : R' -> N -> R') (expE : exp = (fun x n => x ^+ nat_of_N n)).
Fixpoint Nnorm (e : NExpr) : R' :=
match e with
| NC N0 => R_of_Z Z0
| NC (Npos n) => R_of_Z (Zpos n)
| NX x => x%:~R
| NAdd e1 e2 => add (Nnorm e1) (Nnorm e2)
| NSucc e1 => add one (Nnorm e1)
| NMul e1 e2 => mul (Nnorm e1) (Nnorm e2)
| NExp e1 n => exp (Nnorm e1) n
end.
Lemma Nnorm_correct (e : NExpr) : (Neval e)%:R = Nnorm e.
Proof.
elim: e => //=.
- by case; rewrite R_of_ZE.
- by move=> e1 IHe1 e2 IHe2; rewrite addE natrD IHe1 IHe2.
- by move=> e IHe; rewrite addE oneE mulrS IHe.
- by move=> e1 IHe1 e2 IHe2; rewrite mulE natrM IHe1 IHe2.
- by move=> e1 IHe1 e2; rewrite expE natrX IHe1.
Qed.
Fixpoint Rnorm R (f : {rmorphism R -> R'}) (e : RExpr R) : R' :=
match e in RExpr R return {rmorphism R -> R'} -> R' with
| RX _ x => fun f => f x
| R0 _ => fun => zero
| ROpp _ e1 => fun f => opp (Rnorm f e1)
| RZOpp e1 => fun f => opp (Rnorm f e1)
| RAdd _ e1 e2 => fun f => add (Rnorm f e1) (Rnorm f e2)
| RZAdd e1 e2 => fun f => add (Rnorm f e1) (Rnorm f e2)
| RZSub e1 e2 => fun f => sub (Rnorm f e1) (Rnorm f e2)
| RMuln _ e1 e2 => fun f => mul (Rnorm f e1) (Nnorm e2)
| RMulz _ e1 e2 => fun f =>
mul (Rnorm f e1) (Rnorm [rmorphism of intmul 1] e2)
| R1 _ => fun => one
| RMul _ e1 e2 => fun f => mul (Rnorm f e1) (Rnorm f e2)
| RZMul e1 e2 => fun f => mul (Rnorm f e1) (Rnorm f e2)
| RExpn _ e1 n => fun f => exp (Rnorm f e1) n
| RExpPosz _ e1 n => fun f => exp (Rnorm f e1) n
| RExpNegz _ _ _ => fun _ => f (Reval e)
| RZExp e1 (Z.neg _) => fun f => zero
| RZExp e1 n => fun f => exp (Rnorm f e1) (Z.to_N n)
| RInv _ _ => fun _ => f (Reval e)
| RMorph _ _ g e1 => fun f => Rnorm [rmorphism of f \o g] e1
| RMorph' _ _ g e1 => fun f => RZMnorm [additive of f \o g] e1
| RPosz e1 => fun => Nnorm e1
| RNegz e1 => fun => opp (add one (Nnorm e1))
| RZC x => fun => R_of_Z x
end f
with RZMnorm V (f : {additive V -> R'}) (e : ZMExpr V) : R' :=
match e in ZMExpr V return {additive V -> R'} -> R' with
| ZMX _ x => fun f => f x
| ZM0 _ => fun => zero
| ZMOpp _ e1 => fun f => opp (RZMnorm f e1)
| ZMAdd _ e1 e2 => fun f => add (RZMnorm f e1) (RZMnorm f e2)
| ZMMuln _ e1 e2 => fun f => mul (RZMnorm f e1) (Nnorm e2)
| ZMMulz _ e1 e2 => fun f =>
mul (RZMnorm f e1) (Rnorm [rmorphism of intmul 1] e2)
| ZMMorph _ _ g e1 => fun f => RZMnorm [additive of f \o g] e1
end f.
Fixpoint norm_RElist
(lpe : list (RExpr R' * RExpr R' * PExpr Z * PExpr Z)) : seq R' :=
if lpe is (lhs, rhs, _, _) :: lpe then
Rnorm [rmorphism of idfun] lhs ::
Rnorm [rmorphism of idfun] rhs :: norm_RElist lpe
else
[::].
Lemma Rnorm_correct_rec R (f : {rmorphism R -> R'}) (e : RExpr R) :
f (Reval e) = Rnorm f e.
Proof.
pose P R e := forall (f : {rmorphism R -> R'}), f (Reval e) = Rnorm f e.
pose P0 V e := forall (f : {additive V -> R'}), f (ZMeval e) = RZMnorm f e.
move: f; elim e using (@RExpr_ind' P P0); rewrite {R e}/P {}/P0 //=.
- by move=> R f; rewrite rmorph0 zeroE.
- by move=> R e1 IHe1 f; rewrite rmorphN IHe1 oppE.
- by move=> e1 IHe1 f; rewrite rmorphN IHe1 oppE.
- by move=> R e1 IHe1 e2 IHe2 f; rewrite rmorphD IHe1 IHe2 addE.
- by move=> e1 IHe1 e2 IHe2 f; rewrite rmorphD IHe1 IHe2 addE.
- by move=> e1 IHe1 e2 IHe2 f; rewrite rmorphB IHe1 IHe2 subE.
- by move=> R e1 IHe1 e2 f; rewrite rmorphMn IHe1 -mulr_natr Nnorm_correct mulE.
- by move=> R e1 IHe1 e2 IHe2 f; rewrite rmorphMz IHe1 -mulrzr IHe2 mulE.
- by move=> R f; rewrite rmorph1 oneE.
- by move=> R e1 IHe1 e2 IHe2 f; rewrite rmorphM IHe1 IHe2 mulE.
- by move=> e1 IHe1 e2 IHe2 f; rewrite rmorphM IHe1 IHe2 mulE.
- by move=> R e1 IHe1 e2 f; rewrite rmorphX IHe1 expE.
- by move=> R e1 IHe1 e2 f; rewrite rmorphX IHe1 expE.
- move=> e1 IHe1 [|n|n] f; rewrite !(zeroE, expE, rmorph0, rmorph1) //=.
rewrite -IHe1 -rmorphX; congr (f _); lia.
- by move=> R S g e1 IHe1 f; rewrite -IHe1.
- by move=> V R g e1 IHe1 f; rewrite -IHe1.
- by move=> e f; rewrite -[Posz _]intz rmorph_int [LHS]Nnorm_correct.
- move=> e f; rewrite -[Negz _]intz rmorph_int /intmul mulrS Nnorm_correct.
by rewrite oppE addE oneE.
- by move=> x f; rewrite R_of_ZE -(rmorph_int f); congr (f _); lia.
- by move=> V f; rewrite raddf0 zeroE.
- by move=> V e1 IHe1 f; rewrite raddfN IHe1 oppE.
- by move=> V e1 IHe1 e2 IHe2 f; rewrite raddfD IHe1 IHe2 addE.
- move=> V e1 IHe1 e2 f.
by rewrite raddfMn IHe1 -mulr_natr Nnorm_correct mulE.
- by move=> V e1 IHe1 e2 IHe2 f; rewrite raddfMz IHe1 -mulrzr IHe2 mulE.
- by move=> V V' g e1 IHe1 f; rewrite -IHe1.
Qed.
Lemma Rnorm_correct (e : RExpr R') : Reval e = Rnorm [rmorphism of idfun] e.
Proof. exact: Rnorm_correct_rec [rmorphism of idfun] _. Qed.
End Rnorm.
Section Fnorm.
Variables (F : fieldType).
Variables (F_of_Z : Z -> F) (F_of_ZE : F_of_Z = (fun n => (int_of_Z n)%:~R)).
Variables (zero : F) (zeroE : zero = 0%R) (opp : F -> F) (oppE : opp = -%R).
Variables (add : F -> F -> F) (addE : add = +%R).
Variables (sub : F -> F -> F) (subE : sub = (fun x y => x - y)).
Variables (one : F) (oneE : one = 1%R) (mul : F -> F -> F) (mulE : mul = *%R).
Variables (exp : F -> N -> F) (expE : exp = (fun x n => x ^+ nat_of_N n)).
Variables (inv : F -> F) (invE : inv = GRing.inv).
Notation Nnorm := (Nnorm F_of_Z add one mul exp).
Let Nnorm_correct := (Nnorm_correct F_of_ZE addE oneE mulE expE).
Fixpoint Fnorm R (f : {rmorphism R -> F}) (e : RExpr R) : F :=
match e in RExpr R return {rmorphism R -> F} -> F with
| RX _ x => fun f => f x
| R0 _ => fun => zero
| ROpp _ e1 => fun f => opp (Fnorm f e1)
| RZOpp e1 => fun f => opp (Fnorm f e1)
| RAdd _ e1 e2 => fun f => add (Fnorm f e1) (Fnorm f e2)
| RZAdd e1 e2 => fun f => add (Fnorm f e1) (Fnorm f e2)
| RZSub e1 e2 => fun f => sub (Fnorm f e1) (Fnorm f e2)
| RMuln _ e1 e2 => fun f => mul (Fnorm f e1) (Nnorm e2)
| RMulz _ e1 e2 => fun f =>
mul (Fnorm f e1) (Fnorm [rmorphism of intmul 1] e2)
| R1 _ => fun => one
| RMul _ e1 e2 => fun f => mul (Fnorm f e1) (Fnorm f e2)
| RZMul e1 e2 => fun f => mul (Fnorm f e1) (Fnorm f e2)
| RExpn _ e1 n => fun f => exp (Fnorm f e1) n
| RExpPosz _ e1 n => fun f => exp (Fnorm f e1) n
| RExpNegz _ e1 n => fun f => inv (exp (Fnorm f e1) (N.succ n))
| RZExp e1 (Z.neg _) => fun f => zero
| RZExp e1 n => fun f => exp (Fnorm f e1) (Z.to_N n)
| RInv _ e1 => fun f => inv (Fnorm f e1)
| RMorph _ _ g e1 => fun f => Fnorm [rmorphism of f \o g] e1
| RMorph' _ _ g e1 => fun f => FZMnorm [additive of f \o g] e1
| RPosz e1 => fun => Nnorm e1
| RNegz e1 => fun => opp (add one (Nnorm e1))
| RZC x => fun => F_of_Z x
end f
with FZMnorm V (f : {additive V -> F}) (e : ZMExpr V) : F :=
match e in ZMExpr V return {additive V -> F} -> F with
| ZMX _ x => fun f => f x
| ZM0 _ => fun => zero
| ZMOpp _ e1 => fun f => opp (FZMnorm f e1)
| ZMAdd _ e1 e2 => fun f => add (FZMnorm f e1) (FZMnorm f e2)
| ZMMuln _ e1 e2 => fun f => mul (FZMnorm f e1) (Nnorm e2)
| ZMMulz _ e1 e2 => fun f =>
mul (FZMnorm f e1) (Fnorm [rmorphism of intmul 1] e2)
| ZMMorph _ _ g e1 => fun f => FZMnorm [additive of f \o g] e1
end f.
Lemma Fnorm_correct_rec R (f : {rmorphism R -> F}) (e : RExpr R) :
f (Reval e) = Fnorm f e.
Proof.
pose P R e := forall (f : {rmorphism R -> F}), f (Reval e) = Fnorm f e.
pose P0 V e := forall (f : {additive V -> F}), f (ZMeval e) = FZMnorm f e.
move: f; elim e using (@RExpr_ind' P P0); rewrite {R e}/P {}/P0 //=.
- by move=> R f; rewrite rmorph0 zeroE.
- by move=> R e1 IHe1 f; rewrite rmorphN IHe1 oppE.
- by move=> e1 IHe1 f; rewrite rmorphN IHe1 oppE.
- by move=> R e1 IHe1 e2 IHe2 f; rewrite rmorphD IHe1 IHe2 addE.
- by move=> e1 IHe1 e2 IHe2 f; rewrite rmorphD IHe1 IHe2 addE.
- by move=> e1 IHe1 e2 IHe2 f; rewrite rmorphB IHe1 IHe2 subE.
- move=> R e1 IHe1 e2 f.
by rewrite rmorphMn IHe1 -mulr_natr Nnorm_correct mulE.
- by move=> R e1 IHe1 e2 IHe2 f; rewrite rmorphMz IHe1 -mulrzr IHe2 mulE.
- by move=> R f; rewrite rmorph1 oneE.
- by move=> R e1 IHe1 e2 IHe2 f; rewrite rmorphM IHe1 IHe2 mulE.
- by move=> e1 IHe1 e2 IHe2 f; rewrite rmorphM IHe1 IHe2 mulE.
- by move=> R e1 IHe1 e2 f; rewrite rmorphX IHe1 expE.
- by move=> R e1 IHe1 n f; rewrite rmorphX IHe1 expE.
- move=> R e1 IHe1 n f; rewrite fmorphV rmorphX IHe1 invE expE.
rewrite nat_of_N_expandE; congr (_ ^- _); lia.
- move=> e1 IHe1 [|n|n] f; rewrite ?(zeroE, oneE, expE, rmorph0, rmorph1) //=.
rewrite -IHe1 -rmorphX; congr (f _); lia.
- by move=> F' e1 IHe1 f; rewrite fmorphV IHe1 invE.
- by move=> R R' g e1 IHe1 f; rewrite -IHe1.
- by move=> V R g e1 IHe1 f; rewrite -IHe1.
- by move=> e f; rewrite -[Posz _]intz rmorph_int [LHS]Nnorm_correct.
- move=> e f; rewrite -[Negz _]intz rmorph_int /intmul mulrS Nnorm_correct.
by rewrite oppE addE oneE.
- by move=> x f; rewrite F_of_ZE -(rmorph_int f); congr (f _); lia.
- by move=> V f; rewrite raddf0 zeroE.
- by move=> V e1 IHe1 f; rewrite raddfN IHe1 oppE.
- by move=> V e1 IHe1 e2 IHe2 f; rewrite raddfD IHe1 IHe2 addE.
- by move=> V e1 IHe1 e2 f; rewrite raddfMn IHe1 -mulr_natr Nnorm_correct mulE.
- by move=> V e1 IHe1 e2 IHe2 f; rewrite raddfMz IHe1 -mulrzr IHe2 mulE.
- by move=> V V' g e1 IHe1 f; rewrite -IHe1.
Qed.
Lemma Fnorm_correct (e : RExpr F) : Reval e = Fnorm [rmorphism of idfun] e.
Proof. exact: Fnorm_correct_rec [rmorphism of idfun] _. Qed.
End Fnorm.
(* Normalizing ring and field expressions to the Horner form by reflection *)
Lemma RE R : @ring_eq_ext R +%R *%R -%R eq.
Proof. by split; do! move=> ? _ <-. Qed.
Lemma RZ R : ring_morph 0 1 +%R *%R (fun x y : R => x - y) -%R eq
0 1 Z.add Z.mul Z.sub Z.opp Z.eqb
(fun n => (int_of_Z n)%:~R).
Proof.
split=> //= [x y | x y | x y | x | x y /Z.eqb_eq -> //].
- by rewrite !rmorphD.
- by rewrite !rmorphB.
- by rewrite !rmorphM.
- by rewrite !rmorphN.
Qed.
Lemma PN R : @power_theory R 1 *%R eq N id (fun x n => x ^+ nat_of_N n).
Proof.
split => r [] //=; elim=> //= p <-.
- by rewrite Pos2Nat.inj_xI ?exprS -exprD addnn -mul2n.
- by rewrite Pos2Nat.inj_xO ?exprS -exprD addnn -mul2n.
Qed.
Lemma RR (R : comRingType) :
@ring_theory R 0 1 +%R *%R (fun x y => x - y) -%R eq.
Proof.
exact/mk_rt/subrr/(fun _ _ => erefl)/mulrDl/mulrA/mulrC/mul1r/addrA/addrC/add0r.
Qed.
Lemma RF F : @field_theory F 0 1 +%R *%R (fun x y => x - y) -%R
(fun x y => x / y) GRing.inv eq.
Proof.
by split=> // [||x /eqP]; [exact: RR | exact/eqP/oner_neq0 | exact: mulVf].
Qed.
Fixpoint interp_PElist
R R_of_Z zero opp add sub one mul exp
(l : seq R) (lpe : list (RExpr R * RExpr R * PExpr Z * PExpr Z)) : seq R :=
if lpe is (_, _, lhs, rhs) :: lpe then
PEeval zero one add mul sub opp R_of_Z id exp l lhs ::
PEeval zero one add mul sub opp R_of_Z id exp l rhs ::
interp_PElist R_of_Z zero opp add sub one mul exp l lpe
else
[::].
Definition Rcorrect (R : comRingType) :=
ring_correct
(Eqsth R) (RE R) (Rth_ARth (Eqsth R) (RE R) (RR R)) (RZ R) (PN R)
(triv_div_th (Eqsth R) (RE R) (Rth_ARth (Eqsth R) (RE R) (RR R)) (RZ R)).
Lemma ring_correct (R : comRingType) (n : nat) (l : seq R)
(lpe : seq (RExpr R * RExpr R * PExpr Z * PExpr Z))
(re1 re2 : RExpr R) (pe1 pe2 : PExpr Z) :
interp_RElist lpe ->
(forall R_of_Z zero opp add sub one mul exp,
Rnorm R_of_Z zero opp add sub one mul exp [rmorphism of idfun] re1 ::
Rnorm R_of_Z zero opp add sub one mul exp [rmorphism of idfun] re2 ::
norm_RElist R_of_Z zero opp add sub one mul exp lpe =
PEeval zero one add mul sub opp R_of_Z id exp l pe1 ::
PEeval zero one add mul sub opp R_of_Z id exp l pe2 ::
interp_PElist R_of_Z zero opp add sub one mul exp l lpe) ->
(let norm_subst' :=
norm_subst 0 1 Z.add Z.mul Z.sub Z.opp Z.eqb (triv_div 0 1 Z.eqb) n
(mk_monpol_list
0 1 Z.add Z.mul Z.sub Z.opp Z.eqb (triv_div 0 1 Z.eqb)
(map (fun '(_, _, lhs, rhs) => (lhs, rhs)) lpe))
in
Peq Z.eqb (norm_subst' pe1) (norm_subst' pe2)) ->
Reval re1 = Reval re2.
Proof.
move=> Hlpe' /(_ (fun n => (int_of_Z n)%:~R) 0%R -%R +%R (fun x y => x - y)).
move=> /(_ 1%R *%R (fun x n => x ^+ nat_of_N n)) /=.
rewrite -!Rnorm_correct // => -[-> -> Hlpe]; apply: Rcorrect.
elim: lpe Hlpe Hlpe' => [|[[[{}re1 {}re2] {}pe1] {}pe2] lpe IHlpe] //=.
rewrite /= -!Rnorm_correct //.
by move=> [-> ->] Hlpe [Hpe /(IHlpe Hlpe)] {IHlpe Hlpe} /=; case: lpe.
Qed.
(* Post-processing non-zero conditions of the field tactic *)
Section PCond.
Variables (P : Type) (ptrue : P) (pneg : P -> P) (pand : P -> P -> P).
Variables (R : Type) (rO rI : R) (radd rmul rsub : R -> R -> R) (ropp : R -> R).
Variables (req : R -> R -> P).
Variables (C : Type) (phi : C -> R).
Variables (Cpow : Type) (Cp_phi : N -> Cpow) (rpow : R -> Cpow -> R).
Notation eval := (PEeval rO rI radd rmul rsub ropp phi Cp_phi rpow).
Fixpoint PCond' (l : seq R) (le : seq (PExpr C)) : P :=
match le with
| [::] => ptrue
| [:: e1] => pneg (req (eval l e1) rO)
| e1 :: l1 => pand (pneg (req (eval l e1) rO)) (PCond' l l1)
end.
End PCond.
Section PCond_facts.
Lemma PCondE : PCond = PCond' True not and. Proof. by []. Qed.
Variable (F : fieldType).
Let F_of_pos p : F := if p is xH then 1 else (Pos.to_nat p)%:R.
Let F_of_Z n : F :=
match n with Z0 => 0 | Zpos p => F_of_pos p | Zneg p => - F_of_pos p end.
(* The following two lemmas should be immediate consequences of parametricity *)
Lemma PEvalE l e :
PEeval 0 1 +%R *%R (fun x y => x - y) -%R F_of_Z N.to_nat (@GRing.exp F) l e =
PEeval 0 1 +%R *%R (fun x y => x - y) -%R (fun n => (int_of_Z n)%:~R)
N.to_nat (@GRing.exp F) l e.
Proof.
elim: e => //= [| ? -> ? -> | ? -> ? -> | ? -> ? -> | ? -> | ? ->] //.
by case=> [|[p|p|]|[p|p|]]; rewrite //= nmulrn; congr intmul; lia.
Qed.
Lemma PCondP l le :
reflect
(PCond' True not and 0 1 +%R *%R (fun x y : F => x - y) -%R eq
(fun n0 : Z => (int_of_Z n0)%:~R) N.to_nat (@GRing.exp F) l le)
(PCond' true negb andb 0 1 +%R *%R (fun x y : F => x - y) -%R eq_op
F_of_Z N.to_nat (@GRing.exp F) l le).
Proof.
elim: le => [/=|e1 /= [|e2 le] IH].
- exact: ReflectT.
- by rewrite PEvalE; apply: (iffP negP); apply/contra_not => /eqP.
- by rewrite PEvalE; apply: (iffP andP) => -[/eqP ? /IH ?].
Qed.
End PCond_facts.
Definition Fcorrect F :=
Field_correct
(Eqsth F) (RE F) (congr1 GRing.inv)
(F2AF (Eqsth F) (RE F) (RF F)) (RZ F) (PN F)
(triv_div_th (Eqsth F) (RE F) (Rth_ARth (Eqsth F) (RE F) (RR F)) (RZ F)).
Lemma field_correct (F : fieldType) (n : nat) (l : seq F)
(lpe : seq (RExpr F * RExpr F * PExpr Z * PExpr Z))
(re1 re2 : RExpr F) (fe1 fe2 : FExpr Z) :
interp_RElist lpe ->
(forall R_of_Z zero opp add sub one mul exp div inv,
Fnorm R_of_Z zero opp add sub one mul exp inv [rmorphism of idfun] re1 ::
Fnorm R_of_Z zero opp add sub one mul exp inv [rmorphism of idfun] re2 ::
norm_RElist R_of_Z zero opp add sub one mul exp lpe =
FEeval zero one add mul sub opp div inv R_of_Z id exp l fe1 ::
FEeval zero one add mul sub opp div inv R_of_Z id exp l fe2 ::
interp_PElist R_of_Z zero opp add sub one mul exp l lpe) ->
(forall is_true_ negb_ andb_ zero one add mul sub opp Feqb F_of_nat exp l',
is_true_ = is_true -> negb_ = negb -> andb_ = andb ->
zero = 0 -> one = 1 -> add = +%R -> mul = *%R ->
sub = (fun x y => x - y) -> opp = -%R -> Feqb = eq_op ->
F_of_nat = GRing.natmul 1 -> exp = @GRing.exp F -> l' = l ->
let F_of_pos p := if p is xH then one else F_of_nat (Pos.to_nat p) in
let F_of_Z n :=
match n with
Z0 => zero | Zpos p => F_of_pos p | Zneg p => opp (F_of_pos p)
end
in
let norm_subst' :=
norm_subst
0 1 Z.add Z.mul Z.sub Z.opp Z.eqb (triv_div 0 1 Z.eqb) n
(mk_monpol_list 0 1 Z.add Z.mul Z.sub Z.opp Z.eqb (triv_div 0 1 Z.eqb)
(map (fun '(_, _, lhs, rhs) => (lhs, rhs)) lpe))
in
let nfe1 := Field_theory.Fnorm 0 1 Z.add Z.mul Z.sub Z.opp Z.eqb fe1 in
let nfe2 := Field_theory.Fnorm 0 1 Z.add Z.mul Z.sub Z.opp Z.eqb fe2 in
Peq Z.eqb (norm_subst' (PEmul (num nfe1) (denum nfe2)))
(norm_subst' (PEmul (num nfe2) (denum nfe1))) /\
is_true_ (PCond' true negb_ andb_
zero one add mul sub opp Feqb F_of_Z N.to_nat exp l'
(Fapp (Fcons00 0 1 Z.add Z.mul Z.sub Z.opp Z.eqb
(triv_div 0 1 Z.eqb))
(condition nfe1 ++ condition nfe2) [::]))) ->
Reval re1 = Reval re2.
Proof.
move=> Hlpe' /(_ (fun n => (int_of_Z n)%:~R) 0%R -%R +%R (fun x y => x - y)).
move=> /(_ 1%R *%R (fun x n => x ^+ nat_of_N n) (fun x y => x / y) GRing.inv).
rewrite -!Fnorm_correct // => -[-> -> Hlpe].
move=> /(_ _ _ _ _ _ _ _ _ _ _ _ _ _ erefl erefl erefl erefl erefl erefl erefl).
move=> /(_ _ _ _ _ _ _ erefl erefl erefl erefl erefl erefl) [Heq Hcond].
apply: (Fcorrect _ erefl erefl erefl Heq).
elim: {Heq Hcond}lpe Hlpe Hlpe' => //.
move=> [[[{}re1 {}re2] {}pe1] {}pe2] lpe IHlpe; rewrite /= -!Rnorm_correct //.
by move=> [-> ->] Hlpe [Hpe /(IHlpe Hlpe)] {IHlpe Hlpe} /=; case: lpe.
by apply: Pcond_simpl_gen;
[ exact: RE | exact/F2AF/RF/RE | exact: RZ | exact: PN |
exact/triv_div_th/RZ/Rth_ARth/RR/RE/RE/Eqsth | move=> _ ->; exact/PCondP ].
Qed.
Lemma numField_correct (F : numFieldType) (n : nat) (l : seq F)
(lpe : seq (RExpr F * RExpr F * PExpr Z * PExpr Z))
(re1 re2 : RExpr F) (fe1 fe2 : FExpr Z) :
interp_RElist lpe ->
(forall R_of_Z zero opp add sub one mul exp div inv,
Fnorm R_of_Z zero opp add sub one mul exp inv [rmorphism of idfun] re1 ::
Fnorm R_of_Z zero opp add sub one mul exp inv [rmorphism of idfun] re2 ::
norm_RElist R_of_Z zero opp add sub one mul exp lpe =
FEeval zero one add mul sub opp div inv R_of_Z id exp l fe1 ::
FEeval zero one add mul sub opp div inv R_of_Z id exp l fe2 ::
interp_PElist R_of_Z zero opp add sub one mul exp l lpe) ->
(forall is_true_ negb_ andb_ zero one add mul sub opp Feqb F_of_nat exp l',
is_true_ = is_true -> negb_ = negb -> andb_ = andb ->
zero = 0 -> one = 1 -> add = +%R -> mul = *%R ->
sub = (fun x y => x - y) -> opp = -%R -> Feqb = eq_op ->
F_of_nat = GRing.natmul 1 -> exp = @GRing.exp F -> l' = l ->
let F_of_pos p := if p is xH then one else F_of_nat (Pos.to_nat p) in
let F_of_Z n :=
match n with
Z0 => zero | Zpos p => F_of_pos p | Zneg p => opp (F_of_pos p)
end
in
let norm_subst' :=
norm_subst
0 1 Z.add Z.mul Z.sub Z.opp Z.eqb (triv_div 0 1 Z.eqb) n
(mk_monpol_list 0 1 Z.add Z.mul Z.sub Z.opp Z.eqb (triv_div 0 1 Z.eqb)
(map (fun '(_, _, lhs, rhs) => (lhs, rhs)) lpe))
in
let nfe1 := Field_theory.Fnorm 0 1 Z.add Z.mul Z.sub Z.opp Z.eqb fe1 in
let nfe2 := Field_theory.Fnorm 0 1 Z.add Z.mul Z.sub Z.opp Z.eqb fe2 in
Peq Z.eqb (norm_subst' (PEmul (num nfe1) (denum nfe2)))
(norm_subst' (PEmul (num nfe2) (denum nfe1))) /\
is_true_ (PCond' true negb_ andb_
zero one add mul sub opp Feqb F_of_Z N.to_nat exp l'
(Fapp (Fcons2 0 1 Z.add Z.mul Z.sub Z.opp Z.eqb
(triv_div 0 1 Z.eqb))
(condition nfe1 ++ condition nfe2) [::]))) ->
Reval re1 = Reval re2.
Proof.
move=> Hlpe' /(_ (fun n => (int_of_Z n)%:~R) 0%R -%R +%R (fun x y => x - y)).
move=> /(_ 1%R *%R (fun x n => x ^+ nat_of_N n) (fun x y => x / y) GRing.inv).
rewrite -!Fnorm_correct // => -[-> -> Hlpe].
move=> /(_ _ _ _ _ _ _ _ _ _ _ _ _ _ erefl erefl erefl erefl erefl erefl erefl).
move=> /(_ _ _ _ _ _ _ erefl erefl erefl erefl erefl erefl) [Heq Hcond].
apply: (Fcorrect _ erefl erefl erefl Heq).
elim: {Heq Hcond}lpe Hlpe Hlpe' => //.
move=> [[[{}re1 {}re2] {}pe1] {}pe2] lpe IHlpe; rewrite /= -!Rnorm_correct //.
by move=> [-> ->] Hlpe [Hpe /(IHlpe Hlpe)] {IHlpe Hlpe} /=; case: lpe.
apply: Pcond_simpl_complete;
[ exact: RE | exact/F2AF/RF/RE | exact: RZ | exact: PN |
exact/triv_div_th/RZ/Rth_ARth/RR/RE/RE/Eqsth | move=> x y /intr_inj; lia |
move=> _ ->; exact/PCondP ].
Qed.
Ltac reflexivity_no_check :=
match goal with
| |- @eq ?T ?LHS ?RHS => exact_no_check (@Logic.eq_refl T LHS)
end.
Ltac field_normalization :=
let is_true_ := fresh "is_true_" in
let negb_ := fresh "negb_" in
let andb_ := fresh "andb_" in
let zero := fresh "zero" in
let one := fresh "one" in
let add := fresh "add" in
let mul := fresh "mul" in
let sub := fresh "sub" in
let opp := fresh "opp" in
let Feqb := fresh "Feqb" in
let F_of_nat := fresh "F_of_nat" in
let exp := fresh "exp" in
let l := fresh "l" in
let is_trueE := fresh "is_trueE" in
let negbE := fresh "negbE" in
let andbE := fresh "andbE" in
let zeroE := fresh "zeroE" in
let oneE := fresh "oneE" in
let addE := fresh "addE" in
let mulE := fresh "mulE" in
let subE := fresh "subE" in
let oppE := fresh "oppE" in
let FeqbE := fresh "FeqbE" in
let F_of_natE := fresh "F_of_natE" in
let expE := fresh "expE" in
let lE := fresh "lE" in
move=> is_true_ negb_ andb_ zero one add mul sub opp Feqb F_of_nat exp l;
move=> is_trueE negbE andbE zeroE oneE addE mulE subE oppE FeqbE F_of_natE;
move=> expE lE;
vm_compute; refine (conj erefl _);
rewrite ?{is_true_}is_trueE ?{negb_}negbE ?{andb_}andbE;
rewrite ?{zero}zeroE ?{one}oneE ?{add}addE ?{mul}mulE ?{sub}subE ?{opp}oppE;
rewrite ?{Feqb}FeqbE ?{F_of_nat}F_of_natE ?{exp}expE ?{l}lE.
End Internals.
(* Auxiliary Ltac code which will be invoked from Elpi *)
Ltac ring_reflection_check R VarMap Lpe RE1 RE2 PE1 PE2 LpeProofs :=
refine (@ring_correct R 100 VarMap Lpe RE1 RE2 PE1 PE2 LpeProofs
(fun _ _ _ _ _ _ _ _ => erefl) _);
[ vm_compute; reflexivity ].
Ltac ring_reflection_no_check R VarMap Lpe RE1 RE2 PE1 PE2 LpeProofs :=
exact_no_check (@ring_correct
R 100 VarMap Lpe RE1 RE2 PE1 PE2 LpeProofs
(fun _ _ _ _ _ _ _ _ => ltac:(reflexivity_no_check))
ltac:(vm_compute; reflexivity)).
Ltac ring_reflection := ring_reflection_check.
Ltac field_reflection_check F VarMap Lpe RE1 RE2 PE1 PE2 LpeProofs :=
let refl_lemma :=
match type of F with
numFieldType => constr:(@numField_correct) | _ => constr:(@field_correct)
end
in
refine (refl_lemma F 100 VarMap Lpe RE1 RE2 PE1 PE2 LpeProofs
(fun _ _ _ _ _ _ _ _ _ _ => erefl) _);
field_normalization.
Ltac field_reflection_no_check F VarMap Lpe RE1 RE2 PE1 PE2 LpeProofs :=
let refl_lemma :=
match type of F with
numFieldType => constr:(@numField_correct) | _ => constr:(@field_correct)
end
in
let obligation := fresh in
eassert (obligation : _);
[ | exact_no_check (refl_lemma
F 100 VarMap Lpe RE1 RE2 PE1 PE2 LpeProofs
(fun _ _ _ _ _ _ _ _ _ _ => ltac:(reflexivity_no_check))
ltac:(field_normalization; exact obligation)) ].
Ltac field_reflection := field_reflection_check.
Strategy expand
[addn_expand nat_of_pos_rec_expand nat_of_pos_expand nat_of_N_expand
int_of_Z_expand Neval Reval Nnorm Rnorm Fnorm PEeval FEeval].
Register Coq.Init.Logic.eq as ring.eq.
Register Coq.Init.Logic.eq_refl as ring.erefl.
Register Coq.Init.Logic.eq_sym as ring.esym.
Register Coq.Init.Logic.eq_trans as ring.etrans.
Elpi Tactic ring.
Elpi Accumulate File "theories/common.elpi".
Elpi Accumulate File "theories/ring.elpi".
Elpi Typecheck.
Tactic Notation "ring" := elpi ring.
Tactic Notation "ring" ":" ne_constr_list(L) := elpi ring ltac_term_list:(L).
Elpi Tactic field.
Elpi Accumulate File "theories/common.elpi".
Elpi Accumulate File "theories/field.elpi".
Elpi Typecheck.
Tactic Notation "field" := elpi field.
Tactic Notation "field" ":" ne_constr_list(L) := elpi field ltac_term_list:(L).