-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinside_bar_sim.py
169 lines (137 loc) · 5.17 KB
/
inside_bar_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import pandas as pd
import datetime as dt
import utils
import instrument
SLOSS = 0.4
TPROFIT = 0.8
ENTRY_PRC = 0.1
BUY = 1
SELL = -1
NONE = 0
LOSS_FRACTION = -1.0
GAIN_FRACTION = TPROFIT / SLOSS
def direction(row):
if row.mid_c > row.mid_o:
return BUY
return SELL
def get_signal(row):
if row.mid_h_prev > row.mid_h and row.mid_l_prev < row.mid_l:
return row.DIRECTION_prev
return 0
def get_entry_stop(row):
if row.SIGNAL == BUY:
return (row.RANGE_prev * ENTRY_PRC) + row.ask_h_prev
elif row.SIGNAL == SELL:
return row.bid_l_prev - (row.RANGE_prev * ENTRY_PRC)
else:
return NONE
def get_stop_loss(row):
if row.SIGNAL == BUY:
return row.ENTRY - (row.RANGE_prev * SLOSS)
elif row.SIGNAL == SELL:
return row.ENTRY + (row.RANGE_prev * SLOSS)
else:
return NONE
def get_take_profit(row):
if row.SIGNAL == BUY:
return row.ENTRY + (row.RANGE_prev * TPROFIT)
elif row.SIGNAL == SELL:
return row.ENTRY - (row.RANGE_prev * TPROFIT)
else:
return NONE
def triggered(direction, current_price, signal_price):
if direction == BUY and current_price > signal_price:
return True
elif direction == SELL and current_price < signal_price:
return True
return False
def end_hit_calc(direction, SL, price, start_price):
delta = price - start_price
full_delta = start_price - SL
fraction = abs(delta / full_delta)
if direction == BUY and price >= start_price:
return fraction
elif direction == BUY and price < start_price:
return -fraction
elif direction == SELL and price <= start_price:
return fraction
elif direction == SELL and price > start_price:
return -fraction
def process_buy(TP, SL, ask_prices, bid_prices, entry_price):
for index, price in enumerate(ask_prices):
if triggered(BUY, price, entry_price) == True:
for live_price in bid_prices[index:]:
if live_price >= TP:
return GAIN_FRACTION
elif live_price <= SL:
return LOSS_FRACTION
return end_hit_calc(BUY, SL, live_price, entry_price)
return 0.0
def process_sell(TP, SL, ask_prices, bid_prices, entry_price):
for index, price in enumerate(bid_prices):
if triggered(SELL, price, entry_price) == True:
for live_price in ask_prices[index:]:
if live_price <= TP:
return GAIN_FRACTION
elif live_price >= SL:
return LOSS_FRACTION
return end_hit_calc(SELL, SL, live_price, entry_price)
return 0.0
def get_test_pairs(pair_str):
existing_pairs = instrument.Instrument.get_instruments_dict().keys()
pairs = pair_str.split(",")
test_list = []
for p1 in pairs:
for p2 in pairs:
p = f"{p1}_{p2}"
if p in existing_pairs:
test_list.append(p)
return test_list
def get_trades_df(df_raw):
df = df_raw.copy()
df['RANGE'] = df.mid_h - df.mid_l
df['mid_h_prev'] = df.mid_h.shift(1)
df['mid_l_prev'] = df.mid_l.shift(1)
df['ask_h_prev'] = df.ask_h.shift(1)
df['bid_l_prev'] = df.bid_l.shift(1)
df['RANGE_prev'] = df.RANGE.shift(1)
df['DIRECTION'] = df.apply(direction, axis=1)
df['DIRECTION_prev'] = df.DIRECTION.shift(1).fillna(0).astype(int)
df.dropna(inplace=True)
df['SIGNAL'] = df.apply(get_signal, axis=1)
df['ENTRY'] = df.apply(get_entry_stop, axis=1)
df['STOPLOSS'] = df.apply(get_stop_loss, axis=1)
df['TAKEPROFIT'] = df.apply(get_take_profit, axis=1)
df_trades = df[df.SIGNAL!=NONE].copy()
df_trades["next"] = df_trades["time"].shift(-1)
df_trades["trade_end"] = df_trades.next + dt.timedelta(hours=3, minutes=55)
df_trades['trade_start'] = df_trades.time + dt.timedelta(hours=4)
df.dropna(inplace=True)
df_trades.reset_index(drop=True, inplace=True)
return df_trades
def evaluate_pair(df_trades, m5_data):
total = 0
for index, row in df_trades.iterrows():
m5_slice = m5_data[(m5_data.time >= row.trade_start) & (m5_data.time <= row.trade_end)]
if row.SIGNAL == BUY:
r = process_buy(row.TAKEPROFIT, row.STOPLOSS, m5_slice.ask_c.values, m5_slice.bid_c.values, row.ENTRY)
total += r
else:
r = process_sell(row.TAKEPROFIT, row.STOPLOSS, m5_slice.ask_c.values, m5_slice.bid_c.values, row.ENTRY)
total += r
return total
def run():
currencies = "GBP,EUR,USD,CAD,JPY,NZD,CHF"
test_pairs = get_test_pairs(currencies)
grand_total = 0
for pairname in test_pairs:
i_pair = instrument.Instrument.get_instruments_dict()[pairname]
h4_data = pd.read_pickle(utils.get_his_data_filename(pairname, "H4"))
m5_data = pd.read_pickle(utils.get_his_data_filename(pairname, "M5"))
df_trades = get_trades_df(h4_data)
score = evaluate_pair(df_trades, m5_data)
grand_total += score
print(f"{pairname} {score:.0f}")
print(f"TOTAL {grand_total:.0f}")
if __name__ == "__main__":
run()