Skip to content

Commit eb68e63

Browse files
authored
Update README.md with R2024a release
1 parent 4abf34a commit eb68e63

File tree

1 file changed

+36
-31
lines changed

1 file changed

+36
-31
lines changed

README.md

+36-31
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ Discover pretrained models for deep learning in MATLAB.
2020

2121
### Audio
2222
* [Audio Embeddings](https://github.com/matlab-deep-learning/MATLAB-Deep-Learning-Model-Hub#audio-embeddings-)
23-
* [Sound Classification](#SoundClassification)
23+
* [Sound Classification](#Application Specific Audio Models)
2424
* [Pitch Estimation](#PitchEstimation)
2525
* [Speech to Text](https://github.com/matlab-deep-learning/MATLAB-Deep-Learning-Model-Hub#speech-to-text-)
2626

@@ -41,27 +41,29 @@ These networks have been trained on more than a million images and can classify
4141

4242
**Models available in MATLAB:**
4343

44+
**Note 1: Since R2024a, please use the [imagePretrainedNetwork](https://www.mathworks.com/help/deeplearning/ref/imagepretrainednetwork.html) function instead and specify the pretrained model**.
45+
4446
| Network | Size (MB) | Classes | Accuracy % | Location |
4547
| ------------- | ------------- | ------------- | ------------- | ------------- |
46-
| [googlenet](https://www.mathworks.com/help/deeplearning/ref/googlenet.html) | 27| 1000| 66.25 |[Doc](https://www.mathworks.com/help/deeplearning/ref/googlenet.html) <br />[GitHub](https://github.com/matlab-deep-learning/googlenet) |
47-
| [squeezenet](https://www.mathworks.com/help/deeplearning/ref/squeezenet.html) | 5.2| 1000| 55.16 |[Doc](https://www.mathworks.com/help/deeplearning/ref/squeezenet.html) |
48-
| [alexnet](https://www.mathworks.com/help/deeplearning/ref/alexnet.html) | 227| 1000|54.10|[Doc](https://www.mathworks.com/help/deeplearning/ref/alexnet.html) |
49-
| [resnet18](https://www.mathworks.com/help/deeplearning/ref/resnet18.html) | 44| 1000|69.49|[Doc](https://www.mathworks.com/help/deeplearning/ref/resnet18.html) <br />[GitHub](https://github.com/matlab-deep-learning/resnet-18) |
50-
| [resnet50](https://www.mathworks.com/help/deeplearning/ref/resnet50.html) | 96| 1000|74.46|[Doc](https://www.mathworks.com/help/deeplearning/ref/resnet50.html) <br />[GitHub](https://github.com/matlab-deep-learning/resnet-50) |
51-
| [resnet101](https://www.mathworks.com/help/deeplearning/ref/resnet101.html) | 167| 1000|75.96|[Doc](https://www.mathworks.com/help/deeplearning/ref/resnet101.html) <br />[GitHub](https://github.com/matlab-deep-learning/resnet-101) |
52-
| [mobilenetv2](https://www.mathworks.com/help/deeplearning/ref/mobilenetv2.html) | 13| 1000| 70.44|[Doc](https://www.mathworks.com/help/deeplearning/ref/mobilenetv2.html) <br />[GitHub](https://github.com/matlab-deep-learning/mobilenet-v2) |
53-
| [vgg16](https://www.mathworks.com/help/deeplearning/ref/vgg16.html) | 515| 1000|70.29|[Doc](https://www.mathworks.com/help/deeplearning/ref/vgg16.html) |
54-
| [vgg19](https://www.mathworks.com/help/deeplearning/ref/vgg19.html) | 535| 1000|70.42|[Doc](https://www.mathworks.com/help/deeplearning/ref/vgg19.html) |
55-
| [inceptionv3](https://www.mathworks.com/help/deeplearning/ref/inceptionv3.html) | 89| 1000|77.07|[Doc](https://www.mathworks.com/help/deeplearning/ref/inceptionv3.html) |
56-
| [inceptionresnetv2](https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html) | 209| 1000|79.62|[Doc](https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html) |
57-
| [xception](https://www.mathworks.com/help/deeplearning/ref/xception.html) | 85| 1000|78.20|[Doc](https://www.mathworks.com/help/deeplearning/ref/xception.html) |
58-
| [darknet19](https://www.mathworks.com/help/deeplearning/ref/darknet19.html) | 78| 1000|74.00|[Doc](https://www.mathworks.com/help/deeplearning/ref/darknet19.html) |
59-
| [darknet53](https://www.mathworks.com/help/deeplearning/ref/darknet53.html) | 155| 1000|76.46|[Doc](https://www.mathworks.com/help/deeplearning/ref/darknet53.html) |
60-
| [densenet201](https://www.mathworks.com/help/deeplearning/ref/densenet201.html) | 77| 1000| 75.85|[Doc](https://www.mathworks.com/help/deeplearning/ref/densenet201.html) |
61-
| [shufflenet](https://www.mathworks.com/help/deeplearning/ref/shufflenet.html) | 5.4| 1000|63.73|[Doc](https://www.mathworks.com/help/deeplearning/ref/shufflenet.html) |
62-
| [nasnetmobile](https://www.mathworks.com/help/deeplearning/ref/nasnetmobile.html) | 20| 1000|73.41|[Doc](https://www.mathworks.com/help/deeplearning/ref/nasnetmobile.html) |
63-
| [nasnetlarge](https://www.mathworks.com/help/deeplearning/ref/nasnetlarge.html) | 332| 1000|81.83|[Doc](https://www.mathworks.com/help/deeplearning/ref/nasnetlarge.html) |
64-
| [efficientnetb0](https://www.mathworks.com/help/deeplearning/ref/efficientnetb0.html) | 20| 1000|74.72|[Doc](https://www.mathworks.com/help/deeplearning/ref/efficientnetb0.html) |
48+
| [googlenet](https://www.mathworks.com/help/deeplearning/ref/googlenet.html)<sup>1<sup> | 27| 1000| 66.25 |[Doc](https://www.mathworks.com/help/deeplearning/ref/googlenet.html) <br />[GitHub](https://github.com/matlab-deep-learning/googlenet) |
49+
| [squeezenet](https://www.mathworks.com/help/deeplearning/ref/squeezenet.html)<sup>1<sup> | 5.2| 1000| 55.16 |[Doc](https://www.mathworks.com/help/deeplearning/ref/squeezenet.html) |
50+
| [alexnet](https://www.mathworks.com/help/deeplearning/ref/alexnet.html)<sup>1<sup> | 227| 1000|54.10|[Doc](https://www.mathworks.com/help/deeplearning/ref/alexnet.html) |
51+
| [resnet18](https://www.mathworks.com/help/deeplearning/ref/resnet18.html)<sup>1<sup> | 44| 1000|69.49|[Doc](https://www.mathworks.com/help/deeplearning/ref/resnet18.html) <br />[GitHub](https://github.com/matlab-deep-learning/resnet-18) |
52+
| [resnet50](https://www.mathworks.com/help/deeplearning/ref/resnet50.html)<sup>1<sup> | 96| 1000|74.46|[Doc](https://www.mathworks.com/help/deeplearning/ref/resnet50.html) <br />[GitHub](https://github.com/matlab-deep-learning/resnet-50) |
53+
| [resnet101](https://www.mathworks.com/help/deeplearning/ref/resnet101.html)<sup>1<sup> | 167| 1000|75.96|[Doc](https://www.mathworks.com/help/deeplearning/ref/resnet101.html) <br />[GitHub](https://github.com/matlab-deep-learning/resnet-101) |
54+
| [mobilenetv2](https://www.mathworks.com/help/deeplearning/ref/mobilenetv2.html)<sup>1<sup> | 13| 1000| 70.44|[Doc](https://www.mathworks.com/help/deeplearning/ref/mobilenetv2.html) <br />[GitHub](https://github.com/matlab-deep-learning/mobilenet-v2) |
55+
| [vgg16](https://www.mathworks.com/help/deeplearning/ref/vgg16.html)<sup>1<sup> | 515| 1000|70.29|[Doc](https://www.mathworks.com/help/deeplearning/ref/vgg16.html) |
56+
| [vgg19](https://www.mathworks.com/help/deeplearning/ref/vgg19.html)<sup>1<sup> | 535| 1000|70.42|[Doc](https://www.mathworks.com/help/deeplearning/ref/vgg19.html) |
57+
| [inceptionv3](https://www.mathworks.com/help/deeplearning/ref/inceptionv3.html)<sup>1<sup> | 89| 1000|77.07|[Doc](https://www.mathworks.com/help/deeplearning/ref/inceptionv3.html) |
58+
| [inceptionresnetv2](https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html)<sup>1<sup> | 209| 1000|79.62|[Doc](https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html) |
59+
| [xception](https://www.mathworks.com/help/deeplearning/ref/xception.html)<sup>1<sup> | 85| 1000|78.20|[Doc](https://www.mathworks.com/help/deeplearning/ref/xception.html) |
60+
| [darknet19](https://www.mathworks.com/help/deeplearning/ref/darknet19.html)<sup>1<sup> | 78| 1000|74.00|[Doc](https://www.mathworks.com/help/deeplearning/ref/darknet19.html) |
61+
| [darknet53](https://www.mathworks.com/help/deeplearning/ref/darknet53.html)<sup>1<sup> | 155| 1000|76.46|[Doc](https://www.mathworks.com/help/deeplearning/ref/darknet53.html) |
62+
| [densenet201](https://www.mathworks.com/help/deeplearning/ref/densenet201.html)<sup>1<sup> | 77| 1000| 75.85|[Doc](https://www.mathworks.com/help/deeplearning/ref/densenet201.html) |
63+
| [shufflenet](https://www.mathworks.com/help/deeplearning/ref/shufflenet.html)<sup>1<sup> | 5.4| 1000|63.73|[Doc](https://www.mathworks.com/help/deeplearning/ref/shufflenet.html) |
64+
| [nasnetmobile](https://www.mathworks.com/help/deeplearning/ref/nasnetmobile.html)<sup>1<sup> | 20| 1000|73.41|[Doc](https://www.mathworks.com/help/deeplearning/ref/nasnetmobile.html) |
65+
| [nasnetlarge](https://www.mathworks.com/help/deeplearning/ref/nasnetlarge.html)<sup>1<sup> | 332| 1000|81.83|[Doc](https://www.mathworks.com/help/deeplearning/ref/nasnetlarge.html) |
66+
| [efficientnetb0](https://www.mathworks.com/help/deeplearning/ref/efficientnetb0.html)<sup>1<sup> | 20| 1000|74.72|[Doc](https://www.mathworks.com/help/deeplearning/ref/efficientnetb0.html) |
6567
| [ConvMixer](https://github.com/matlab-deep-learning/convmixer-patches-are-all-you-need) | 7.7| 10|-|[GitHub](https://github.com/matlab-deep-learning/convmixer-patches-are-all-you-need) |
6668
| [Vison Transformer](https://www.mathworks.com/help/vision/ref/visiontransformer.html) | Large-16 - 1100<br /> Base-16 - 331.4<br /> Small-16 - 84.7<br /> Tiny-16 - 22.2| 1000|Large-16 - 85.59<br /> Base-16 - 85.49<br /> Small-16 - 83.73<br /> Tiny-16 - 78.22|[Doc](https://www.mathworks.com/help/vision/ref/visiontransformer.html) |
6769

@@ -235,7 +237,9 @@ Inputs are sequences of text, outputs are text feature embeddings.
235237

236238
| Network | Applications | Size (MB) | Location |
237239
| ------------- | ------------- |------------ |------------ |
238-
| [BERT](https://github.com/matlab-deep-learning/transformer-models#bert-and-finbert) | Feature Extraction (Sentence and Word embedding), Text Classification, Token Classification, Masked Language Modeling, Question Answering |390 |[GitHub](https://github.com/matlab-deep-learning/transformer-models#bert-and-finbert) |
240+
| [BERT](https://www.mathworks.com/help/textanalytics/ref/bert.html) | Feature Extraction (Sentence and Word embedding), Text Classification, Token Classification, Masked Language Modeling, Question Answering |390 |[GitHub](https://github.com/matlab-deep-learning/transformer-models#bert-and-finbert) <br /> [Doc](https://www.mathworks.com/help/textanalytics/ref/bert.html) |
241+
| [all-MiniLM-L6-v2](https://www.mathworks.com/matlabcentral/fileexchange/156399-text-analytics-toolbox-model-for-all-minilm-l6-v2-network) | Document Embedding, Clustering, Information Retrieval |80 |[Doc](https://www.mathworks.com/matlabcentral/fileexchange/156399-text-analytics-toolbox-model-for-all-minilm-l6-v2-network) |
242+
| [all-MiniLM-L12-v2](https://www.mathworks.com/matlabcentral/fileexchange/156394-text-analytics-toolbox-model-for-all-minilm-l12-v2-network) | Document Embedding, Clustering, Information Retrieval |120 |[Doc](https://www.mathworks.com/matlabcentral/fileexchange/156394-text-analytics-toolbox-model-for-all-minilm-l12-v2-network) |
239243

240244
**Application Specific Transformers**
241245

@@ -248,30 +252,31 @@ Inputs are sequences of text, outputs are text feature embeddings.
248252

249253
## Audio Embeddings <a name="AudioEmbeddings"/>
250254

251-
Audio Embedding pretrained models have already learned to extract powerful and informative features from audio signals. Use them as a starting point to learn a new task using transfer learning.
255+
Audio embedding pretrained models have already learned to extract powerful and informative features from audio signals. Use them as a starting point to learn a new task using transfer learning.
252256

253-
Inputs are Audio signals, outputs are audio feature embeddings.
257+
Inputs are audio signals, outputs are audio feature embeddings.
254258

255259
![](Images/audio_workflow.png)
256260

261+
**Note 2: Since R2024a, please use the [audioPretrainedNetwork](https://www.mathworks.com/help/audio/ref/audiopretrainednetwork.html) function instead and specify the pretrained model**.
257262
| Network | Application | Size (MB) | Location |
258263
| ------------- | ------------- | ------------- |------------- |
259-
| [VGGish](https://www.mathworks.com/help/audio/ref/vggish.html) | Feature Embeddings | 257 |[Doc](https://www.mathworks.com/help/audio/ref/vggish.html) |
260-
| [OpenL3](https://www.mathworks.com/help/audio/ref/openl3.html) | Feature Embeddings | 200 |[Doc](https://www.mathworks.com/help/audio/ref/openl3.html) |
264+
| [VGGish](https://www.mathworks.com/help/audio/ref/vggish.html)<sup>2<sup> | Feature Embeddings | 257 |[Doc](https://www.mathworks.com/help/audio/ref/vggish.html) |
265+
| [OpenL3](https://www.mathworks.com/help/audio/ref/openl3.html)<sup>2<sup> | Feature Embeddings | 200 |[Doc](https://www.mathworks.com/help/audio/ref/openl3.html) |
261266

262-
**Application Specific Audio Models**
267+
## Application Specific Audio Models<a name="Application Specific Audio Models"/>
263268

264269
| Network | Application | Size (MB) | Output Classes | Location | Output Example |
265270
| ------------- | ------------- | ------------- |------------- |------------- |------------- |
266-
| <a name="SoundClassification"/>[vadnet](https://www.mathworks.com/help/audio/ref/vadnet.html) | Voice Activity Detection (regression) | 0.427 | - |[Doc](https://www.mathworks.com/help/audio/ref/vadnet.html) |<img src="Images/vadnet.png" width=150>|
267-
| <a name="SoundClassification"/>[YAMNet](https://www.mathworks.com/help/audio/ref/yamnet.html) | Sound Classification | 13.5 | 521 |[Doc](https://www.mathworks.com/help/audio/ref/yamnet.html) |<img src="Images/audio_classification.png" width=150>|
268-
| <a name="PitchEstimation"/>[CREPE](https://www.mathworks.com/help/audio/ref/crepe.html) | Pitch Estimation (Regression) | 132| - |[Doc](https://www.mathworks.com/help/audio/ref/crepe.html) |<img src="Images/pitch_estimation.png" width=150>|
271+
| <a name="SoundClassification"/>[vadnet](https://www.mathworks.com/help/audio/ref/vadnet.html)<sup>2<sup> | Voice Activity Detection (regression) | 0.427 | - |[Doc](https://www.mathworks.com/help/audio/ref/vadnet.html) |<img src="Images/vadnet.png" width=150>|
272+
| <a name="SoundClassification"/>[YAMNet](https://www.mathworks.com/help/audio/ref/yamnet.html)<sup>2<sup> | Sound Classification | 13.5 | 521 |[Doc](https://www.mathworks.com/help/audio/ref/yamnet.html) |<img src="Images/audio_classification.png" width=150>|
273+
| <a name="PitchEstimation"/>[CREPE](https://www.mathworks.com/help/audio/ref/crepe.html)<sup>2<sup> | Pitch Estimation (regression) | 132| - |[Doc](https://www.mathworks.com/help/audio/ref/crepe.html) |<img src="Images/pitch_estimation.png" width=150>|
269274

270275
## Speech to Text <a name="Speech2Text"/>
271276

272-
Speech to text pretrained models take an audio input and translate it into a text output. They are useful in digitizating audio files for downstream text processing tasks such as text summarization and sentiment analysis.
277+
Speech-to-text models provide a fast, efficient method to convert spoken language into written text, enhancing accessibility for individuals with disabilities, enabling downstream tasks like text summarization and sentiment analysis, and streamlining documentation processes. As a key element of human-machine interfaces, including personal assistants, it allows for natural and intuitive interactions, enabling machines to understand and execute spoken commands, improving usability and broadening inclusivity across various applications.
273278

274-
Inputs are Audio signals, outputs is text.
279+
Inputs are audio signals, outputs is text.
275280

276281
![](Images/wav2vec.png)
277282

0 commit comments

Comments
 (0)