|
| 1 | +// Java program Miller-Rabin primality test |
| 2 | +import java.io.*; |
| 3 | +import java.math.*; |
| 4 | + |
| 5 | +class GFG { |
| 6 | + |
| 7 | + // Utility function to do modular |
| 8 | + // exponentiation. It returns (x^y) % p |
| 9 | + static int power(int x, int y, int p) { |
| 10 | + |
| 11 | + int res = 1; // Initialize result |
| 12 | + |
| 13 | + //Update x if it is more than or |
| 14 | + // equal to p |
| 15 | + x = x % p; |
| 16 | + |
| 17 | + while (y > 0) { |
| 18 | + |
| 19 | + // If y is odd, multiply x with result |
| 20 | + if ((y & 1) == 1) |
| 21 | + res = (res * x) % p; |
| 22 | + |
| 23 | + // y must be even now |
| 24 | + y = y >> 1; // y = y/2 |
| 25 | + x = (x * x) % p; |
| 26 | + } |
| 27 | + |
| 28 | + return res; |
| 29 | + } |
| 30 | + |
| 31 | + // This function is called for all k trials. |
| 32 | + // It returns false if n is composite and |
| 33 | + // returns false if n is probably prime. |
| 34 | + // d is an odd number such that d*2<sup>r</sup> |
| 35 | + // = n-1 for some r >= 1 |
| 36 | + static boolean miillerTest(int d, int n) { |
| 37 | + |
| 38 | + // Pick a random number in [2..n-2] |
| 39 | + // Corner cases make sure that n > 4 |
| 40 | + int a = 2 + (int)(Math.random() % (n - 4)); |
| 41 | + |
| 42 | + // Compute a^d % n |
| 43 | + int x = power(a, d, n); |
| 44 | + |
| 45 | + if (x == 1 || x == n - 1) |
| 46 | + return true; |
| 47 | + |
| 48 | + // Keep squaring x while one of the |
| 49 | + // following doesn't happen |
| 50 | + // (i) d does not reach n-1 |
| 51 | + // (ii) (x^2) % n is not 1 |
| 52 | + // (iii) (x^2) % n is not n-1 |
| 53 | + while (d != n - 1) { |
| 54 | + x = (x * x) % n; |
| 55 | + d *= 2; |
| 56 | + |
| 57 | + if (x == 1) |
| 58 | + return false; |
| 59 | + if (x == n - 1) |
| 60 | + return true; |
| 61 | + } |
| 62 | + |
| 63 | + // Return composite |
| 64 | + return false; |
| 65 | + } |
| 66 | + |
| 67 | + // It returns false if n is composite |
| 68 | + // and returns true if n is probably |
| 69 | + // prime. k is an input parameter that |
| 70 | + // determines accuracy level. Higher |
| 71 | + // value of k indicates more accuracy. |
| 72 | + static boolean isPrime(int n, int k) { |
| 73 | + |
| 74 | + // Corner cases |
| 75 | + if (n <= 1 || n == 4) |
| 76 | + return false; |
| 77 | + if (n <= 3) |
| 78 | + return true; |
| 79 | + |
| 80 | + // Find r such that n = 2^d * r + 1 |
| 81 | + // for some r >= 1 |
| 82 | + int d = n - 1; |
| 83 | + |
| 84 | + while (d % 2 == 0) |
| 85 | + d /= 2; |
| 86 | + |
| 87 | + // Iterate given nber of 'k' times |
| 88 | + for (int i = 0; i < k; i++) |
| 89 | + if (!miillerTest(d, n)) |
| 90 | + return false; |
| 91 | + |
| 92 | + return true; |
| 93 | + } |
| 94 | + |
| 95 | + // Driver program |
| 96 | + public static void main(String args[]) { |
| 97 | + |
| 98 | + int k = 4; // Number of iterations |
| 99 | + |
| 100 | + System.out.println("All primes smaller " |
| 101 | + + "than 100: "); |
| 102 | + |
| 103 | + for (int n = 1; n < 100; n++) |
| 104 | + if (isPrime(n, k)) |
| 105 | + System.out.print(n + " "); |
| 106 | + } |
| 107 | +} |
0 commit comments