-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
147 lines (118 loc) · 4.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# the folder path of your CheXpert and CheXphoto datasets
# e.g. your dataset is in /aaa/bbb/CheXpert-v1.0, then dataset_path='/aaa/bbb'
dataset_path = '/home/max/datasets'
# where is your folder that contains random images
ms_coco_path = '/home/max/datasets/MSCOCO/test2017'
img_size = (224, 224)
batch_size = 32
max_epochs = 10000
steps_per_epoch = 100
from tensorflow.keras.models import Model
from tensorflow.keras.layers import *
from tensorflow.keras.applications import DenseNet201
from tensorflow.keras.applications.densenet import preprocess_input
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.backend import clear_session
import os
import pandas as pd
import numpy as np
import cv2 as cv
import tensorflow as tf
import glob
from utils import *
import gc
df_cxrs = pd.read_csv(os.path.join(dataset_path, 'CheXpert-v1.0-small', 'train.csv'))
bg_paths = glob.glob(os.path.join(ms_coco_path, '*.jpg'), recursive=True)
bg_paths = pd.Series(bg_paths)
def STRN():
model_in = Input(shape=(*img_size, 3))
backbone = DenseNet201(include_top=False, weights='imagenet', pooling='avg')
x = backbone(model_in)
model_out = Dense(8, activation='linear')(x)
model = Model(inputs=[model_in], outputs=[model_out])
model.compile(
optimizer=Adam(learning_rate=1e-5),
loss='mse',
)
return model
strn = STRN()
x_valid, y_valid = load_validation_data(dataset_path, dataset_name='CheXphoto-natural', size=img_size)
train_record = pd.DataFrame(columns=['train_loss', 'train_iou', 'valid_loss', 'valid_iou'])
if not os.path.exists('rectified_photograph_samples'):
os.makedirs('rectified_photograph_samples')
# record the best score
best_valid_loss = 999
best_valid_iou = 0
for i in range(1, max_epochs+1):
record = {}
train_losses = []
train_ious = []
for j in range(1,steps_per_epoch+1):
# train and calculate train_loss
x_train, y_train = generate_training_sample_batch(dataset_path, df_cxrs, bg_paths, batch_size=batch_size, size=img_size)
train_loss = strn.train_on_batch(x=tf.convert_to_tensor(preprocess_input(x_train)), y=tf.convert_to_tensor(y_train))
train_losses.append(train_loss)
# calculate train_iou
ious = []
y_pred = strn.predict_on_batch(tf.convert_to_tensor(preprocess_input(x_train)))
for k in range(y_train.shape[0]):
try:
iou = IOU(y_train[k], y_pred[k])
except:
print('Cannot calculate IoU')
iou = 0
ious.append(iou)
train_ious.append(np.mean(ious))
print('Step: {:d}/{:d} loss: {:.4f}'.format(j, 100, train_loss), end='\r')
train_loss = np.mean(train_losses)
train_iou = np.mean(train_ious)
record['train_loss'] = train_loss
record['train_iou'] = train_iou
# calculate valid_loss
valid_loss = strn.evaluate(x=tf.convert_to_tensor(preprocess_input(x_valid)), y=tf.convert_to_tensor(y_valid), verbose=0)
record['valid_loss'] = valid_loss
# calculate valid_iou
valid_ious = []
for x, y in zip(x_valid, y_valid):
y_pred = strn.predict_on_batch(tf.convert_to_tensor(preprocess_input(np.expand_dims(x, axis=0))))[0]
try:
iou = IOU(y, y_pred)
except:
print('Cannot calculate IoU')
iou = 0
valid_ious.append(iou)
valid_iou = np.mean(valid_ious)
record['valid_iou'] = valid_iou
print('Epoch: {:d} Step: {:d}/{:d} train_loss: {:.4f}, train_iou: {:.4f}, valid_loss: {:.4f}, valid_iou: {:.4f}'.format(i, j, steps_per_epoch, train_loss, train_iou, valid_loss, valid_iou))
train_record = train_record.append(record, ignore_index=True)
# plot a rectified photographs to verify the training
y = strn.predict_on_batch(tf.convert_to_tensor(preprocess_input(np.expand_dims(x_valid[0], axis=0))))[0]
try:
# cv.imwrite('plot/{:d}.jpg'.format(i), draw_pts(x_valid[0], y))
cv.imwrite('rectified_photograph_samples/{:d}.jpg'.format(i), apply(x_valid[0], out_to_matrix(y)))
except:
print('Cannot save the image.')
# plot a training sample.
try:
cv.imwrite('sample.jpg', x_train[0])
except:
print('Cannot save the image.')
# save training log
try:
train_record.to_csv('log.csv')
except:
print('Cannot save the log.')
if valid_loss <= best_valid_loss:
best_valid_loss = valid_loss
try:
strn.save('instances/best_loss.h5')
except:
print('Cannot save the model.')
if valid_iou >= best_valid_iou:
best_valid_iou = valid_iou
try:
strn.save('instances/best_iou.h5')
except:
print('Cannot save the model.')
clear_session()
gc.collect()