Skip to content

Commit 10163a2

Browse files
committed
Merge branch 'dev' into main
2 parents 8a8a7dd + d14902a commit 10163a2

File tree

23 files changed

+54
-54
lines changed

23 files changed

+54
-54
lines changed

docs/source/_docs/analysis/example_scenarios.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -326,7 +326,7 @@ Finally, we fit the SAMS model
326326
>>> regr = SamsRegressor(
327327
>>> factors, Y2X,
328328
>>> dependencies=dependencies, mode='weak',
329-
>>> forced_model=np.array([0], np.int_),
329+
>>> forced_model=np.array([0], np.int64),
330330
>>> model_size=6, nb_models=5000, skipn=1000,
331331
>>> )
332332
>>> regr.fit(data.drop(columns='Y'), data['Y'])

examples/analysis/sams/sams_generic.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@
4141
regr = SamsRegressor(
4242
factors, Y2X,
4343
dependencies=dependencies, mode='weak',
44-
forced_model=np.array([0], np.int_),
44+
forced_model=np.array([0], np.int64),
4545
model_size=6, nb_models=5000, skipn=1000,
4646
)
4747
regr.fit(data.drop(columns='Y'), data['Y'])

examples/analysis/sams/sams_partial_rsm.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@
4141
regr = SamsRegressor(
4242
factors, Y2X,
4343
dependencies=dependencies, mode='weak',
44-
forced_model=np.array([0], np.int_),
44+
forced_model=np.array([0], np.int64),
4545
model_size=6, nb_models=5000, skipn=1000,
4646
entropy_model_order=model_order
4747
)

src/pyoptex/__init__.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,2 @@
11
# Define the version number
2-
__version__ = "1.0.0-rc3"
2+
__version__ = "1.0.0-rc4"

src/pyoptex/analysis/estimators/sams/bnb/sams_bnb.py

+4-4
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,7 @@ def __init__(self, model_size, models, nterms,
106106

107107
# Default values
108108
if forced_model is None:
109-
forced_model = np.zeros((0,), dtype=np.int_)
109+
forced_model = np.zeros((0,), dtype=np.int64)
110110

111111
# Store the variables
112112
self.model_size = model_size
@@ -137,8 +137,8 @@ def initialize(self, nfit):
137137
The corresponding scores.
138138
"""
139139
# Initialize the best size 'nfit' models
140-
top_models = np.zeros((nfit, self.model_size), dtype=np.int_)
141-
top_frequencies = np.zeros(nfit, dtype=np.int_)
140+
top_models = np.zeros((nfit, self.model_size), dtype=np.int64)
141+
top_frequencies = np.zeros(nfit, dtype=np.int64)
142142

143143
# Initialization procedure
144144
models = self.spm
@@ -214,7 +214,7 @@ def init_queue(self, top_results, top_scores):
214214

215215
for i in options:
216216
# Create a node
217-
node = np.zeros(self.model_size, dtype=np.int_)
217+
node = np.zeros(self.model_size, dtype=np.int64)
218218
node[:self.forced_model.size] = self.forced_model
219219
node[self.forced_model.size] = i
220220
node[self.forced_model.size + 1:] = -1

src/pyoptex/analysis/estimators/sams/estimator.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -349,7 +349,7 @@ def _topn_selection(self, results, sizes, nterms, topn=4, timeout_sec=180):
349349
"""
350350
# Initialize results
351351
models = list()
352-
counts = np.zeros(len(sizes) * topn, dtype=np.int_)
352+
counts = np.zeros(len(sizes) * topn, dtype=np.int64)
353353

354354
# Compute BnB
355355
for i, size in tqdm(enumerate(sizes), total=len(sizes), disable=(not self.tqdm)):
@@ -537,7 +537,7 @@ def _fit(self, X, y):
537537

538538
# Fit kmeans on selected number of clusters
539539
self.kmeans_ = KMeans(n_init='auto', n_clusters=ncluster).fit(results_cluster)
540-
self.kmeans_.skips = np.zeros(ncluster, dtype=np.int_)
540+
self.kmeans_.skips = np.zeros(ncluster, dtype=np.int64)
541541
self.kmeans_.dists = kmeans_dists
542542

543543
# Perform model select on each cluster

src/pyoptex/analysis/estimators/sams/models/model.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,7 @@ def __init__(self, X, y, forced=None, mode='weak', dep=None):
6363

6464
# Create default forced
6565
if forced is None:
66-
forced = np.array([], dtype=np.int_)
66+
forced = np.array([], dtype=np.int64)
6767

6868
# Store
6969
self.X = X
@@ -288,11 +288,11 @@ def sample_model_dep_mcmc(dep, size, n_samples=1, forced=None, mode=None, skip=1
288288
m = Model(np.zeros((0, len(dep))), np.zeros((0,)), mode=mode, forced=forced, dep=dep)
289289

290290
# Initialize a random model
291-
model = np.zeros((size,), dtype=np.int_)
291+
model = np.zeros((size,), dtype=np.int64)
292292
m.init(model)
293293

294294
# Intialize the samples
295-
samples = np.zeros((n_samples, size), dtype=np.int_)
295+
samples = np.zeros((n_samples, size), dtype=np.int64)
296296

297297
# Warmup phase
298298
for i in range(n_warmup):

src/pyoptex/analysis/estimators/sams/plot.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ def plot_raster(results, terms, skipn=0, metric_name='metric',
5555
# Check if we require kmeans plotting
5656
if kmeans is not None:
5757
# Initialize indices with first skipn
58-
idx = np.zeros(len(results), dtype=np.int_)
58+
idx = np.zeros(len(results), dtype=np.int64)
5959
idx[:skipn] = np.arange(skipn)
6060

6161
# Initialize the array of skips and thresholds
@@ -64,7 +64,7 @@ def plot_raster(results, terms, skipn=0, metric_name='metric',
6464

6565
# Add default skips
6666
if not hasattr(kmeans, 'skips'):
67-
kmeans.skips = np.zeros(kmeans.n_clusters, dtype=np.int_)
67+
kmeans.skips = np.zeros(kmeans.n_clusters, dtype=np.int64)
6868

6969
# Loop over all clusters
7070
for i in range(kmeans.n_clusters):

src/pyoptex/analysis/estimators/sams/simulation.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -43,15 +43,15 @@ def simulate_sams(model, model_size, accept_fn=None, nb_models=10, minprob=0.01,
4343

4444
# Initialize model storage
4545
rdtype = np.dtype([
46-
('model', np.int_, model_size),
46+
('model', np.int64, model_size),
4747
('coeff', np.float64, model_size),
4848
('metric', np.float64)
4949
])
5050
results = np.zeros(nb_models, dtype=rdtype)
51-
models = np.zeros((nb_models, model_size), dtype=np.int_)
51+
models = np.zeros((nb_models, model_size), dtype=np.int64)
5252

5353
# Create initial model
54-
m = np.zeros(model_size, dtype=np.int_)
54+
m = np.zeros(model_size, dtype=np.int64)
5555
m = model.init(m)
5656

5757
# Compute initial metric

src/pyoptex/analysis/mixins/conditional_mixin.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -75,7 +75,7 @@ def _regr_params(self, X, y):
7575

7676
# Create the conditional model
7777
self._conditional_model = pd.DataFrame(
78-
np.eye(len(self._conditional_factors) ,dtype=np.int_),
78+
np.eye(len(self._conditional_factors) ,dtype=np.int64),
7979
columns=[str(f.name) for f in self._conditional_factors]
8080
)
8181

src/pyoptex/analysis/mixins/fit_mixin.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -284,7 +284,7 @@ def preprocess_fit(self, X, y):
284284
if len(self._re) == 0:
285285
# Define OLS fit
286286
self.fit_fn_ = lambda X, y, terms: fit_ols(X[:, terms], y)
287-
self.Zs_ = np.empty((0, len(X)), dtype=np.int_)
287+
self.Zs_ = np.empty((0, len(X)), dtype=np.int64)
288288

289289
else:
290290
# Create list from the random effects

src/pyoptex/doe/cost_optimal/codex/insert.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ def groups_insert(Yn, Zs, pos, colstart):
3939
"""
4040

4141
# Initialization
42-
a = np.zeros(len(Zs), dtype=np.int_)
42+
a = np.zeros(len(Zs), dtype=np.int64)
4343
b = [() for _ in range(a.size)]
4444

4545
# Loop over all factors

src/pyoptex/doe/cost_optimal/codex/optimization.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -342,15 +342,15 @@ def ce_struct_optimizer(state, params):
342342
for col in range(params.colstart.size - 1):
343343
# Detect blocks
344344
blocks = np.concatenate((
345-
np.array([0], np.int_),
345+
np.array([0], np.int64),
346346
np.where(numba_any_axis1(numba_diff_axis0(state.Y[:, params.colstart[col]:params.colstart[col+1]]) != 0))[0] + 1,
347-
np.array([len(state.Y)], np.int_)
347+
np.array([len(state.Y)], np.int64)
348348
))
349349

350350
# Extract blocks with no overlap in prior
351351
blocks = blocks[blocks >= nprior]
352352
if blocks[0] != nprior:
353-
blocks = np.concatenate((np.array([nprior], np.int_), blocks))
353+
blocks = np.concatenate((np.array([nprior], np.int64), blocks))
354354

355355
for b in range(blocks.size - 1):
356356
# Rows from that block

src/pyoptex/doe/cost_optimal/codex/simulation.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ def simulate(params, nsims=100, validate=False):
3535
# Initialize stats
3636
params.stats['it'] = 0
3737
params.stats['rejections'] = 0
38-
params.stats['insert_loc'] = -1 * np.ones(nsims, dtype=np.int_)
38+
params.stats['insert_loc'] = -1 * np.ones(nsims, dtype=np.int64)
3939
params.stats['removed_insert'] = np.zeros(nsims, dtype=np.bool_)
4040
params.stats['metrics'] = np.zeros(nsims, dtype=np.float64)
4141

src/pyoptex/doe/cost_optimal/cov.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -233,7 +233,7 @@ def _cov(Y, X, Zs, Vinv, costs, random=False):
233233
else:
234234
# Define blocks and ratios
235235
cum_cost = np.cumsum(costs[cost_index][0])
236-
blocks = np.floor_divide(cum_cost, cost).astype(np.int_)
236+
blocks = np.floor_divide(cum_cost, cost).astype(np.int64)
237237

238238
# Update Zs, Vinv
239239
Zs = list(Zs)

src/pyoptex/doe/fixed_structure/init.py

+4-4
Original file line numberDiff line numberDiff line change
@@ -174,8 +174,8 @@ def __correct_constraints(effect_types, effect_levels, grps, coords,
174174
for i in permitted_to_optimize:
175175
# Determine which runs belong to that group
176176
if level == 0:
177-
runs = np.array([i], dtype=np.int_)
178-
prev_runs = np.arange(i+1, dtype=np.int_)
177+
runs = np.array([i], dtype=np.int64)
178+
prev_runs = np.arange(i+1, dtype=np.int64)
179179
else:
180180
runs = np.flatnonzero(Zs[level-1] == i)
181181
prev_runs = np.flatnonzero(Zs[level-1] <= i)
@@ -188,8 +188,8 @@ def __correct_constraints(effect_types, effect_levels, grps, coords,
188188
co
189189
for co in (np.unique(Zs[l-1][runs]) if l > 0 else runs)
190190
if co in grps[k]
191-
], dtype=np.int_)
192-
if l in zidx[j:] else np.empty((0,), dtype=np.int_)
191+
], dtype=np.int64)
192+
if l in zidx[j:] else np.empty((0,), dtype=np.int64)
193193
for k, l in enumerate(effect_levels)
194194
]
195195
grps_ = List(grps_)

src/pyoptex/doe/fixed_structure/splitk_plot/init.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -175,11 +175,11 @@ def __correct_constraints(effect_types, effect_levels, grps, thetas, coords,
175175
np.array([
176176
g for g in grps[col]
177177
if g >= grp*jmp/thetas[l] and g < (grp+1)*jmp/thetas[l]
178-
], dtype=np.int_)
178+
], dtype=np.int64)
179179
if l < level else (
180-
np.arange(grp, grp+1, dtype=np.int_)
180+
np.arange(grp, grp+1, dtype=np.int64)
181181
if (l == level and grp in grps[col])
182-
else np.arange(0, dtype=np.int_)
182+
else np.arange(0, dtype=np.int64)
183183
)
184184
for col, l in enumerate(effect_levels)
185185
]

src/pyoptex/doe/fixed_structure/splitk_plot/utils.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -211,7 +211,7 @@ def terms_per_plot_level(factors, model):
211211
# Initialize
212212
plot_levels = np.array([f.re.level for f in factors])
213213
max_split_level = np.max(plot_levels)
214-
split_levels = np.zeros(max_split_level+1, np.int_)
214+
split_levels = np.zeros(max_split_level+1, np.int64)
215215

216216
# Compute amount of terms with only factors higher or equal to current split-level
217217
for i in range(max_split_level + 1):
@@ -270,7 +270,7 @@ def validate_plot_sizes(factors, model):
270270
"""
271271
# Compute plot sizes
272272
nb_plots = max(f.re.level for f in factors) + 1
273-
plot_sizes = np.zeros(nb_plots, dtype=np.int_)
273+
plot_sizes = np.zeros(nb_plots, dtype=np.int64)
274274
for f in factors:
275275
plot_sizes[f.re.level] = f.re.size
276276

src/pyoptex/doe/fixed_structure/splitk_plot/wrapper.py

+4-4
Original file line numberDiff line numberDiff line change
@@ -132,7 +132,7 @@ def create_parameters(factors, fn, prior=None, grps=None, use_formulas=True):
132132

133133
# Extract the plot sizes
134134
nb_plots = max(f.re.level for f in factors) + 1
135-
plot_sizes = np.ones(nb_plots, dtype=np.int_) * -1
135+
plot_sizes = np.ones(nb_plots, dtype=np.int64) * -1
136136
ratios = [None] * nb_plots
137137
for f in factors:
138138
# Fix plot sizes
@@ -209,7 +209,7 @@ def create_parameters(factors, fn, prior=None, grps=None, use_formulas=True):
209209

210210
# Compute old plot sizes
211211
nb_old_plots = max(p.level for p in old_plots) + 1
212-
old_plot_sizes = np.ones(nb_old_plots, dtype=np.int_) * -1
212+
old_plot_sizes = np.ones(nb_old_plots, dtype=np.int64) * -1
213213
for p in old_plots:
214214
if old_plot_sizes[p.level] == -1:
215215
old_plot_sizes[p.level] = p.size
@@ -241,8 +241,8 @@ def create_parameters(factors, fn, prior=None, grps=None, use_formulas=True):
241241
grps = List([lgrps[lvl] for lvl in effect_levels])
242242
else:
243243
grps = List([np.concatenate(
244-
(grps[i].astype(np.int_), lgrps[effect_levels[i]]),
245-
dtype=np.int_
244+
(grps[i].astype(np.int64), lgrps[effect_levels[i]]),
245+
dtype=np.int64
246246
) for i in range(len(effect_levels))])
247247

248248
# Create the parameters

src/pyoptex/doe/fixed_structure/wrapper.py

+4-4
Original file line numberDiff line numberDiff line change
@@ -154,15 +154,15 @@ def create_parameters(factors, fn, nruns, block_effects=(), prior=None, grps=Non
154154

155155
# Compute Zs and Vinv
156156
if len(re) > 0:
157-
Zs = np.array([np.array(r.Z) for r in re], dtype=np.int_)
157+
Zs = np.array([np.array(r.Z) for r in re], dtype=np.int64)
158158
V = np.array([obs_var_from_Zs(Zs, N=nruns, ratios=r) for r in ratios])
159159
else:
160-
Zs = np.empty((0, 0), dtype=np.int_)
160+
Zs = np.empty((0, 0), dtype=np.int64)
161161
V = np.expand_dims(np.eye(nruns), 0)
162162

163163
# Augment V with the random blocking effects
164164
if len(block_effects) > 0:
165-
beZs = np.array([np.array(be.Z) for be in block_effects], dtype=np.int_)
165+
beZs = np.array([np.array(be.Z) for be in block_effects], dtype=np.int64)
166166
V += np.array([
167167
obs_var_from_Zs(beZs, N=nruns, ratios=r, include_error=False)
168168
for r in be_ratios
@@ -172,7 +172,7 @@ def create_parameters(factors, fn, nruns, block_effects=(), prior=None, grps=Non
172172
Vinv = np.linalg.inv(V)
173173

174174
# Define which groups to optimize
175-
lgrps = [np.arange(nruns, dtype=np.int_)] + [np.arange(np.max(Z)+1) for Z in Zs]
175+
lgrps = [np.arange(nruns, dtype=np.int64)] + [np.arange(np.max(Z)+1) for Z in Zs]
176176
grps = List([lgrps[lvl] for lvl in effect_levels])
177177

178178
# Create the parameters

src/pyoptex/utils/design.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -184,7 +184,7 @@ def encode_design(Y, effect_types, coords=None):
184184
eye = np.concatenate((np.eye(cols[i]), -np.ones((1, cols[i]))))
185185
else:
186186
eye = coords[i]
187-
Yenc[..., start:start+cols[i]] = numba_take_advanced(eye, Y[..., i].astype(np.int_))
187+
Yenc[..., start:start+cols[i]] = numba_take_advanced(eye, Y[..., i].astype(np.int64))
188188
start += cols[i]
189189

190190
return Yenc

0 commit comments

Comments
 (0)