-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathpredict.py
187 lines (147 loc) · 6.13 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
""" GANsNRoses: Selfie to Anime https://github.com/mchong6/GANsNRoses"""
import os
import tempfile
from base64 import b64encode
import cv2
import dlib
import kornia.augmentation as K
import moviepy.video.io.ImageSequenceClip
import numpy as np
import scipy
import torch
from aubio import source, tempo
from cog import BasePredictor, File, Input, Path
from PIL import Image
from torch import nn
from torch.nn import functional as F
from torch.utils import data
from torchvision import transforms, utils
from tqdm import tqdm
from model import *
from util import *
torch.backends.cudnn.benchmark = True
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
# params
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def predict(
self,
inpath: Path = Input(description="Input image or short video", default=None),
) -> Path:
# get input file
inpath = str(inpath)
# model setup
latent_dim = 8
n_mlp = 5
num_down = 3
G_A2B = (
Generator(
256, 4, latent_dim, n_mlp, channel_multiplier=1, lr_mlp=0.01, n_res=1
)
.to(self.device)
.eval()
)
ckpt = torch.load("GNR_checkpoint.pt", map_location=self.device)
G_A2B.load_state_dict(ckpt["G_A2B_ema"])
test_transform = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), inplace=True
),
]
)
if "mp4" in inpath: # video
print(f"*** Processing video input: {inpath} ***")
# use normal mode for demo purposes (see original repo for other modes)
mode = "normal"
# Frame numbers and length of output video
start_frame = 0
end_frame = None
frame_num = 0
mp4_fps = 30
faces = None
smoothing_sec = 0.7
eig_dir_idx = 1 # first eig isnt good so we skip it
frames = []
reader = cv2.VideoCapture(inpath)
num_frames = int(reader.get(cv2.CAP_PROP_FRAME_COUNT))
all_latents = torch.randn([8, latent_dim]).to(self.device)
in_latent = all_latents
# Face detector
face_detector = dlib.get_frontal_face_detector()
assert start_frame < num_frames - 1
end_frame = end_frame if end_frame else num_frames
while reader.isOpened():
_, image = reader.read()
if image is None:
break
if frame_num < start_frame:
continue
# Image size
height, width = image.shape[:2]
# 2. Detect with dlib
if faces is None:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_detector(gray, 1)
if len(faces):
# For now only take biggest face
face = faces[0]
# --- Prediction ---------------------------------------------------
# Face crop with dlib and bounding box scale enlargement
x, y, size = get_boundingbox(face, width, height)
cropped_face = image[y : y + size, x : x + size]
cropped_face = cv2.cvtColor(cropped_face, cv2.COLOR_BGR2RGB)
cropped_face = Image.fromarray(cropped_face)
frame = test_transform(cropped_face).unsqueeze(0).to(self.device)
with torch.no_grad():
A2B_content, A2B_style = G_A2B.encode(frame)
in_latent = all_latents
fake_A2B = G_A2B.decode(A2B_content.repeat(8, 1, 1, 1), in_latent)
fake_A2B = torch.cat([fake_A2B[:4], frame, fake_A2B[4:]], 0)
fake_A2B = utils.make_grid(
fake_A2B.cpu(), normalize=True, range=(-1, 1), nrow=3
)
# concatenate original image top
fake_A2B = fake_A2B.permute(1, 2, 0).cpu().numpy()
frames.append(fake_A2B * 255)
frame_num += 1
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(
frames, fps=mp4_fps
)
# save to temporary file. hack to make sure ffmpeg works
output_path = Path(tempfile.mkdtemp()) / "output.mp4"
clip.write_videofile(str(output_path))
print(f'saving to {output_path}')
return output_path
# else, just process the image
print(f"*** Processing image input: {inpath} ***")
num_styles = 5
style = torch.randn([num_styles, latent_dim]).to(self.device)
# read input image
image = cv2.imread(inpath)
height, width = image.shape[:2]
# Detect with dlib
face_detector = dlib.get_frontal_face_detector()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# grab first face
face = face_detector(gray, 1)[0]
# Face crop with dlib and bounding box scale enlargement
x, y, size = get_boundingbox(face, width, height)
cropped_face = image[y : y + size, x : x + size]
cropped_face = cv2.cvtColor(cropped_face, cv2.COLOR_BGR2RGB)
cropped_face = Image.fromarray(cropped_face)
real_A = cropped_face
real_A = test_transform(real_A).unsqueeze(0).to(self.device)
with torch.no_grad():
A2B_content, _ = G_A2B.encode(real_A)
fake_A2B = G_A2B.decode(A2B_content.repeat(num_styles, 1, 1, 1), style)
A2B = torch.cat([real_A, fake_A2B], 0)
# create and save output
output = utils.make_grid(A2B.cpu(), normalize=True, range=(-1, 1), nrow=10)
output_path = Path(tempfile.mkdtemp()) / "output.png"
torchvision.utils.save_image(output, output_path)
print(f'saving to {output_path}')
return output_path