-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnolapse_test_pystan.py
355 lines (284 loc) · 12.2 KB
/
nolapse_test_pystan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# nolapse_test_pystan.py - Testing fits of HDDM models without lapse process in Stan using pystan in Python 3
#
# Copyright (C) 2021 Michael D. Nunez, <[email protected]>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Record of Revisions
#
# Date Programmers Descriptions of Change
# ==== ================ ======================
# 02/15/21 Michael Nunez Converted from nolapse_test.py
# Modules
import numpy as np
import pystan
import scipy.io as sio
from scipy import stats
import warnings
import os
import matplotlib.pyplot as plt
import pyhddmjagsutils as phju
### Simulations ###
# Generate samples from the joint-model of reaction time and choice
#Note you could remove this if statement and replace with loading your own data to dictionary "gendata"
if not os.path.exists('data/genparam_test4.mat'):
# Number of simulated participants
nparts = 40
# Number of conditions
nconds = 6
# Number of trials per participant and condition
ntrials = 50
# Number of total trials in each simulation
N = ntrials*nparts*nconds
# Set random seed
np.random.seed(2021)
ndt = np.random.uniform(.15, .6, size=(nparts)) # Uniform from .15 to .6 seconds
alpha = np.random.uniform(.8, 1.4, size=(nparts)) # Uniform from .8 to 1.4 evidence units
beta = np.random.uniform(.3, .7, size=(nparts)) # Uniform from .3 to .7 * alpha
delta = np.random.uniform(-4, 4, size=(nparts, nconds)) # Uniform from -4 to 4 evidence units per second
ndttrialrange = np.random.uniform(0,.1, size=(nparts)) # Uniform from 0 to .1 seconds
deltatrialsd = np.random.uniform(0, 2, size=(nparts)) # Uniform from 0 to 2 evidence units per second
y = np.zeros((N))
rt = np.zeros((N))
acc = np.zeros((N))
participant = np.zeros((N)) #Participant index
condition = np.zeros((N)) #Condition index
indextrack = np.arange(ntrials)
for p in range(nparts):
for k in range(nconds):
tempout = phju.simulratcliff(N=ntrials, Alpha= alpha[p], Tau= ndt[p], Beta=beta[p],
Nu= delta[p,k], Eta= deltatrialsd[p], rangeTau=ndttrialrange[p])
tempx = np.sign(np.real(tempout))
tempt = np.abs(np.real(tempout))
y[indextrack] = tempx*tempt
rt[indextrack] = tempt
acc[indextrack] = (tempx + 1)/2
participant[indextrack] = p+1
condition[indextrack] = k+1
indextrack += ntrials
genparam = dict()
genparam['ndt'] = ndt
genparam['beta'] = beta
genparam['alpha'] = alpha
genparam['delta'] = delta
genparam['ndttrialrange'] = ndttrialrange
genparam['deltatrialsd'] = deltatrialsd
genparam['rt'] = rt
genparam['acc'] = acc
genparam['y'] = y
genparam['participant'] = participant
genparam['condition'] = condition
genparam['nparts'] = nparts
genparam['nconds'] = nconds
genparam['ntrials'] = ntrials
genparam['N'] = N
sio.savemat('data/genparam_test4.mat', genparam)
else:
genparam = sio.loadmat('data/genparam_test4.mat')
# Stan code
tostan = '''
functions {
/* Wiener diffusion log-PDF for a single response (adapted from brms 1.10.2)
* Arguments:
* Y: acc*rt in seconds (negative and positive RTs for incorrect and correct responses respectively)
* boundary: boundary separation parameter > 0
* ndt: non-decision time parameter > 0
* bias: initial bias parameter in [0, 1]
* drift: drift rate parameter
* Returns:
* a scalar to be added to the log posterior
*/
real diffusion_lpdf(real Y, real boundary,
real ndt, real bias, real drift) {
if (Y >= 0) {
return wiener_lpdf( fabs(Y) | boundary, ndt, bias, drift );
} else {
return wiener_lpdf( fabs(Y) | boundary, ndt, 1-bias, -drift );
}
}
}
data {
int<lower=1> N; // Number of trial-level observations
int<lower=1> nconds; // Number of conditions
int<lower=1> nparts; // Number of participants
real y[N]; // acc*rt in seconds (negative and positive RTs for incorrect and correct responses respectively)
int<lower=1> participant[N]; // Participant index
int<lower=1> condition[N]; // Condition index
}
parameters {
real<lower=0> deltasdcond; // Between-condition variability in drift rate to choice A
real<lower=0> tersd; // Between-participant variability in non-decision time
real<lower=0> alphasd; // Between-participant variability in Speed-accuracy trade-off
real<lower=0> betasd; // Between-participant variability in choice A start point bias
real<lower=0> deltasd; // Between-participant variability in drift rate to choice A
real terhier; // Hierarchical Non-decision time
real alphahier; // Hierarchical boundary parameter (speed-accuracy tradeoff)
real betahier; // Hierarchical start point bias towards choice A
real deltahier; // Hierarchical drift rate to choice A
vector<lower=0, upper=1>[nparts] ter; // Non-decision time
vector<lower=0, upper=3>[nparts] alpha; // Boundary parameter (speed-accuracy tradeoff)
vector<lower=0, upper=1>[nparts] beta; // Start point bias towards choice A
vector[nparts] deltapart; // Participant-level drift rate to choice A
matrix[nparts,nconds] delta; // Drift rate to choice A
}
model {
// ##########
// Between-condition variability priors
// ##########
// Between-condition variability in drift rate to choice A
deltasdcond ~ gamma(1,1);
// ##########
// Between-participant variability priors
// ##########
// Between-participant variability in non-decision time
tersd ~ gamma(.3,1);
// Between-participant variability in Speed-accuracy trade-off
alphasd ~ gamma(1,1);
//Between-participant variability in choice A start point bias
betasd ~ gamma(.3,1);
// Between-participant variability in drift rate to choice A
deltasd ~ gamma(1,1);
// ##########
// Hierarchical DDM parameter priors
// ##########
// Hierarchical Non-decision time
terhier ~ normal(.5,.25);
// Hierarchical boundary parameter (speed-accuracy tradeoff)
alphahier ~ normal(1, .5);
// Hierarchical start point bias towards choice A
betahier ~ normal(.5, .25);
// Hierarchical drift rate to choice A
deltahier ~ normal(0, 2);
// ##########
// Participant-level DDM parameter priors
// ##########
for (p in 1:nparts) {
// Participant-level non-decision time
ter[p] ~ normal(terhier, tersd) T[0, 1];
// Participant-level boundary parameter (speed-accuracy tradeoff)
alpha[p] ~ normal(alphahier, alphasd) T[0, 3];
//Start point bias towards choice A
beta[p] ~ normal(betahier, betasd) T[0, 1];
// Participant-level drift rate to correct
deltapart[p] ~ normal(deltahier, deltasd);
// ##########
// Condition-level DDM parameter priors
// ##########
for (c in 1:nconds) {
// Drift rate to correct
delta[p,c] ~ normal(deltapart[p], deltasdcond);
}
}
// Wiener likelihood
for (i in 1:N) {
target += diffusion_lpdf( y[i] | alpha[participant[i]], ter[participant[i]], beta[participant[i]], delta[participant[i],condition[i]]);
}
}
'''
# pystan code
nchains = 6
burnin = 2000
nsamps = 10000
modelfile = f'stancode/nolapse_test.stan'
f = open(modelfile, 'w')
f.write(tostan)
f.close()
# Track these variables
trackvars = ['deltasdcond',
'tersd', 'alphasd', 'betasd', 'deltasd',
'terhier', 'alphahier', 'betahier', 'deltahier',
'ter', 'alpha', 'beta', 'deltapart',
'delta']
N = np.squeeze(genparam['N'])
#Fit model to data
y = np.squeeze(genparam['y'])
rt = np.squeeze(genparam['rt'])
participant = np.array(np.squeeze(genparam['participant']),dtype=int)
condition = np.array(np.squeeze(genparam['condition']),dtype=int)
nparts = np.squeeze(genparam['nparts'])
nconds = np.squeeze(genparam['nconds'])
ntrials = np.squeeze(genparam['ntrials'])
#Fit model to data
data = {'y': y, 'N':N, 'nparts': nparts, 'nconds': nconds, 'condition': condition, 'participant': participant};
minrt = np.zeros(nparts)
for p in range(0,nparts):
minrt[p] = np.min(rt[(participant == (p+1))])
initials = []
for c in range(0, nchains):
chaininit = {
'deltasdcond': np.random.uniform(.1, 3.),
'tersd': np.random.uniform(.01, .2),
'alphasd': np.random.uniform(.01, 1.),
'betasd': np.random.uniform(.01, .2),
'deltasd': np.random.uniform(.1, 3.),
'terhier': np.random.uniform(.1, .5),
'alphahier': np.random.uniform(.5, 2.),
'betahier': np.random.uniform(.2, .8),
'deltahier': np.random.uniform(-4., 4.),
'ter': np.random.uniform(.1, .5, size=nparts),
'alpha': np.random.uniform(.5, 2., size=nparts),
'beta': np.random.uniform(.2, .8, size=nparts),
'deltapart': np.random.uniform(-4., 4., size=nparts),
'delta': np.random.uniform(-4., 4., size=(nparts,nconds))
}
for p in range(0, nparts):
chaininit['ter'][p] = np.random.uniform(0., minrt[p]/2)
initials.append(chaininit)
print('Fitting ''nolapse'' model in Stan...')
sm = pystan.StanModel(model_code=tostan)
fit = sm.sampling(data=data, pars=trackvars, iter=nsamps+burnin, warmup=burnin, thin=10, init=initials, chains=nchains, n_jobs=nchains, seed=2020)
# fit = sm.sampling(data=data, pars=trackvars, iter=nsamps+burnin, warmup=burnin, thin=10, init='0', chains=nchains, n_jobs=nchains, seed=2020)
# fit = sm.sampling(data=data, pars=trackvars, iter=nsamps+burnin, warmup=burnin, thin=10, init='random', chains=nchains, n_jobs=nchains, seed=2022)
extractedsamps = fit.extract(permuted=False, pars=trackvars)
samples = phju.flipstanout(extractedsamps)
savestring = ('modelfits/genparam_test4_nolapse_stan.mat')
print('Saving results to: \n %s' % savestring)
sio.savemat(savestring, samples)
#Diagnostics
samples = sio.loadmat(savestring)
diags = phju.diagnostic(samples)
#Posterior distributions
plt.figure()
phju.jellyfish(samples['delta'])
plt.title('Posterior distributions of the drift-rate')
plt.savefig(('figures/delta_posteriors_nolapse_stan.png'), format='png',bbox_inches="tight")
plt.figure()
phju.jellyfish(samples['ter'])
plt.title('Posterior distributions of the non-decision time parameter')
plt.savefig(('figures/ter_posteriors_nolapse_stan.png'), format='png',bbox_inches="tight")
plt.figure()
phju.jellyfish(samples['beta'])
plt.title('Posterior distributions of the start point parameter')
plt.savefig(('figures/beta_posteriors_nolapse_stan.png'), format='png',bbox_inches="tight")
plt.figure()
phju.jellyfish(samples['alpha'])
plt.title('Posterior distributions of boundary parameter')
plt.savefig(('figures/alpha_posteriors_nolapse_stan.png'), format='png',bbox_inches="tight")
#Recovery
plt.figure()
phju.recovery(samples['delta'],genparam['delta'][:, :])
plt.title('Recovery of the drift-rate')
plt.savefig(('figures/delta_recovery_nolapse_stan.png'), format='png',bbox_inches="tight")
plt.figure()
phju.recovery(samples['ter'],genparam['ndt'])
plt.title('Recovery of the non-decision time parameter')
plt.savefig(('figures/ter_recovery_nolapse_stan.png'), format='png',bbox_inches="tight")
plt.figure()
phju.recovery(samples['beta'],genparam['beta'])
plt.title('Recovery of the start point parameter')
plt.savefig(('figures/beta_recovery_nolapse_stan.png'), format='png',bbox_inches="tight")
plt.figure()
phju.recovery(samples['alpha'],genparam['alpha'])
plt.title('Recovery of boundary parameter')
plt.savefig(('figures/alpha_recovery_nolapse_stan.png'), format='png',bbox_inches="tight")