-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
264 lines (233 loc) · 8.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# imports
# torch and friends
from functools import reduce
from config import Config
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.utils as vutils
from torchvision.datasets import CIFAR10, FashionMNIST
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
# standard
import os
import random
import time
import numpy as np
from tqdm import tqdm
from dataset import MPI3D, DSprites, DSpritesSmall, MPI3DSmall, UkiyoE, WrappedDataLoader
import matplotlib.pyplot as plt
import matplotlib
from contextlib import nullcontext
from solvers import VAESolver, IntroSolver
from solvers.intro_tc import IntroTCSovler
from solvers.tc import TCSovler
from utils import *
from models import SoftIntroVAE
matplotlib.use("Agg")
# TODO: numpy docstring type
def train_soft_intro_vae(config: Config):
"""
:param config: Config for a run
:return:
"""
if config.seed != -1:
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed(config.seed)
torch.backends.cudnn.deterministic = True
print("random seed: ", config.seed)
device = (
torch.device("cpu")
if config.device <= -1
else torch.device("cuda:" + str(config.device))
)
# run cudnn benchmark for optimal convolution algorithm
torch.backends.cudnn.benchmark = True
# --------------build models -------------------------
if config.dataset == "ukiyo_e256":
image_size = 256
channels = [64, 128, 256, 512, 512, 512]
train_set = UkiyoE.load_data()
ch = 3
elif config.dataset == "ukiyo_e128":
image_size = 128
channels = [64, 128, 256, 512, 512]
train_set = UkiyoE.load_data(resize=image_size)
ch = 3
elif config.dataset == "ukiyo_e64":
image_size = 64
channels = [64, 128, 256, 512]
train_set = UkiyoE.load_data(resize=image_size)
ch = 3
elif config.dataset == "dsprites":
image_size = 64
channels = [64, 128, 256, 512]
train_set = DSprites.load_data()
ch = 1
elif config.dataset == "dsprites_small":
image_size = 64
channels = [64, 128, 256, 512]
train_set = DSpritesSmall.load_data()
ch = 1
elif config.dataset == "mpi3d":
image_size = 64
channels = [64, 128, 256, 512]
train_set = MPI3D.load_data()
ch = 3
elif config.dataset == "mpi3d_small":
image_size = 64
channels = [64, 128, 256, 512]
train_set = MPI3DSmall.load_data()
ch = 3
else:
raise NotImplementedError("dataset is not supported")
writer = (
SummaryWriter(
comment=f"_{config.solver}_{config.dataset}_z{config.z_dim}_{config.beta_kl}_{config.beta_neg}_{config.beta_rec}_{config.gamma_r}_{config.arch}_{config.optimizer}"
)
if config.use_tensorboard
else None
)
SingletonWriter().writer = writer
SingletonWriter().cur_iter = 0
SingletonWriter().test_iter = len(train_set) // config.batch_size
model = SoftIntroVAE(
arch=config.arch,
cdim=ch,
zdim=config.z_dim,
channels=channels,
image_size=image_size,
).to(device)
print(model)
print(
"{:,} Parameters".format(
sum(p.numel() for p in model.parameters() if p.requires_grad)
)
)
if config.anomaly_detection:
torch.autograd.set_detect_anomaly(True)
def get_nan_hook(name):
def nan_hook(self, _, output):
if not isinstance(output, tuple):
outputs = [output]
else:
outputs = output
for i, out in enumerate(outputs):
nan_mask = torch.isnan(out)
if nan_mask.any():
print(
f"In {name}: Found NAN in output {i}: {nan_mask.sum().item()}/{np.prod(np.array(output.shape))}"
)
return nan_hook
for name, submodule in model.named_modules():
submodule.register_forward_hook(get_nan_hook(name))
lr_e, lr_d = config.lr, config.lr
optim_class = getattr(optim, config.optimizer)
optimizer_e = optim_class(model.encoder.parameters(), lr=lr_e)
optimizer_d = optim_class(model.decoder.parameters(), lr=lr_d)
_train_data_loader = DataLoader(
train_set,
batch_size=config.batch_size,
shuffle=True,
num_workers=config.num_workers,
)
def batch_to_device(x: torch.Tensor, y: torch.Tensor):
if config.anomaly_detection:
assert x.max() <= 1.0
assert x.min() >= 0.0
return x.to(device), y.to(device)
train_data_loader = WrappedDataLoader(_train_data_loader, batch_to_device)
grad_scaler = torch.cuda.amp.GradScaler()
solver_kwargs = dict(
dataset=train_set,
model=model,
batch_size=config.batch_size,
optimizer_e=optimizer_e,
optimizer_d=optimizer_d,
recon_loss_type=config.recon_loss_type,
beta_kl=config.beta_kl,
beta_rec=config.beta_rec,
device=device,
use_amp=config.use_amp,
grad_scaler=grad_scaler,
writer=writer,
test_iter=config.test_iter,
clip=config.clip,
)
if config.solver == "vae":
solver = VAESolver(**solver_kwargs)
elif config.solver == "intro":
solver = IntroSolver(
**solver_kwargs, beta_neg=config.beta_neg, gamma_r=config.gamma_r
)
elif config.solver == "tc":
solver = TCSovler(**solver_kwargs)
elif config.solver == "intro-tc":
solver = IntroTCSovler(
**solver_kwargs, beta_neg=config.beta_neg, gamma_r=config.gamma_r
)
else:
raise ValueError(f"Solver '{config.solver_type}' not supported!")
last_epoch_loss = LossDict()
cur_iter = 0
for epoch in range(config.start_epoch, config.num_epochs):
# save models
if epoch % config.save_interval == 0 and epoch > 0:
save_epoch = (epoch // config.save_interval) * config.save_interval
prefix = f"{config.solver}_{config.dataset}_betas_{str(config.beta_kl)}_{str(config.beta_neg)}_{str(config.beta_rec)}_{str(config.gamma_r)}_zdim_{config.z_dim}_{config.arch}_{config.optimizer}"
save_checkpoint(model, save_epoch, cur_iter, prefix)
model.train()
pbar = tqdm(iterable=train_data_loader)
with torch.autograd.profiler.profile(enabled=config.profile) as prof:
for batch in pbar:
# --------------train------------
if len(batch) == 2: # (image,label) tuple
batch = batch[0]
# Perform train step with specific loss funtion
loss_dict = solver.train_step(batch, cur_iter)
postfix = loss_dict.copy()
pbar.set_postfix(postfix)
if config.profile and cur_iter == 50:
break
if epoch == config.num_epochs - 1:
loss_dict.pop("L2")
last_epoch_loss += loss_dict
cur_iter += 1
SingletonWriter().cur_iter = cur_iter
pbar.close()
if config.profile:
print(prof.key_averages().table(sort_by="self_cpu_time_total"))
break
if epoch == config.num_epochs - 1:
b_size = batch.size(0)
real_batch = batch.to(solver.device)
noise_batch = torch.randn(size=(b_size, config.z_dim)).to(device)
fake = model.sample(noise_batch)
solver.write_images(real_batch, fake, cur_iter)
# save models
prefix = f"{config.solver}_{config.dataset}_betas_{str(config.beta_kl)}_{str(config.beta_neg)}_{str(config.beta_rec)}_{str(config.gamma_r)}_zdim_{config.z_dim}_{config.arch}_{config.optimizer}"
save_checkpoint(model, epoch, cur_iter, prefix)
model.train()
if writer:
num_batches = len(train_data_loader)
last_epoch_loss /= num_batches
writer.add_hparams(
dict(
optimizer=config.optimizer,
recon_loss_type=config.recon_loss_type,
lr=config.lr,
batch_size=config.batch_size,
solver=config.solver,
dataset=config.dataset,
z_dim=config.z_dim,
beta_kl=config.beta_kl,
beta_neg=config.beta_neg,
beta_rec=config.beta_rec,
gamma_r=config.gamma_r,
arch=config.arch,
clip=config.clip
),
metric_dict=dict(last_epoch_loss)
)