-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_any.py
273 lines (246 loc) · 10 KB
/
train_any.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import argparse
import json
import sys
import numpy as np
import random
import torch
from rotom.dataset import TextCLSDataset
from ditto.dataset import DittoDataset
from functools import partial
num_classes = {'AMAZON2': 2, 'AMAZON5': 5,
'AG': 4}
vocabs = {'SNIPS': ['AddToPlaylist', 'BookRestaurant',
'GetWeather', 'PlayMusic',
'RateBook', 'SearchCreativeWork',
'SearchScreeningEvent'],
'ATIS': ['atis_abbreviation', 'atis_aircraft',
'atis_airfare', 'atis_airline',
'atis_airline#atis_flight_no', 'atis_airport',
'atis_capacity', 'atis_city', 'atis_distance',
'atis_flight', 'atis_flight#atis_airfare',
'atis_flight_no', 'atis_flight_time',
'atis_ground_fare', 'atis_ground_service',
'atis_quantity', 'atis_restriction',
'atis_meal',
'atis_day_name',
'atis_airfare#atis_flight',
'atis_flight#atis_airline',
'atis_flight_no#atis_airline',
'atis_airfare#atis_flight_time',
'atis_ground_service#atis_ground_fare'],
'TREC': ['0', '1', '2', '3', '4', '5'],
'SST-2': ['0', '1'],
'SST-5': ['0', '1', '2', '3', '4'],
'IMDB': ['pos', 'neg']}
def get_cls_config(hp):
"""Get configuration of the task"""
taskname = hp.task
if 'em_' in taskname:
name = taskname[3:]
vocab = ['0', '1']
path = 'data/em/%s/' % name
config = {'name': taskname,
'trainset': path + 'train.txt',
'validset': path + 'valid.txt',
'testset': path + 'test.txt',
'task_type': 'classification',
'vocab': vocab}
config['unlabeled'] = config['trainset']
config['validset'] = config['trainset']
return config,\
DittoDataset,\
DittoDataset
elif 'cleaning_' in taskname:
LL = taskname.split('_')
if hp.size is not None:
size, idx = str(hp.size), str(hp.run_id)
name = LL[1]
else:
prefix, size, idx = LL[0], LL[-2], LL[-1]
name = '_'.join(LL[1:-2])
path = 'data/cleaning/%s/%s_10000/%s/' % (name, size, idx)
vocab = ['0', '1']
config = {'name': taskname,
'trainset': path + 'train.txt',
'validset': path + 'train.txt',
'testset': path + 'test.txt',
'unlabeled': path + 'unlabeled.txt',
'task_type': 'classification',
'vocab': vocab}
return config, DittoDataset, DittoDataset
elif 'compare' in taskname:
# compare2_SST-2
LL = taskname.split('_')
prefix, name = LL[0], LL[1]
path = 'data/textcls/%s/%s/' % (prefix, name)
vocab = vocabs[name]
idx = str(hp.run_id)
config = {'name': taskname,
'trainset': path + 'train.txt.%s' % idx,
'validset': path + 'valid.txt.%s' % idx,
'testset': path + 'test.txt',
'unlabeled': path + 'train.txt.full',
'task_type': 'classification',
'vocab': vocab}
return config, TextCLSDataset, TextCLSDataset
else:
# Text CLS datasets
if 'textcls_' in taskname:
taskname = taskname.replace('textcls_', '')
if hp.size is None:
path, size = taskname.split('_')
else:
path = taskname
size = str(hp.size)
path = path.upper()
if path in vocabs:
vocab = vocabs[path]
else:
vocab = [str(i) for i in \
range(1, num_classes[path]+1)]
path = 'data/textcls/%s' % path
config = {'name': taskname,
'trainset': '%s/train.txt.%s' % (path, size),
'validset': '%s/valid.txt.%s' % (path, size),
'testset': '%s/test.txt' % path,
'unlabeled': '%s/train.txt.full' % path,
'task_type': 'classification',
'vocab': vocab}
return config, TextCLSDataset, TextCLSDataset
def get_ops(hp):
"""return a pair of DA operators for each task"""
em = ["t5", "del", "del"]
cls = ["t5", "token_repl_tfidf", "token_del_tfidf"]
cleaning = ["t5", "swap", "swap"]
if 'cleaning_' in task:
return cleaning
if "em_" in task: # EM
return em
else:
return cls
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="mrpc")
parser.add_argument("--run_id", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--max_len", type=int, default=256)
parser.add_argument("--lr", type=float, default=3e-5)
parser.add_argument("--n_epochs", type=int, default=20)
parser.add_argument("--save_model", dest="save_model", action="store_true")
parser.add_argument("--logdir", type=str, default="checkpoints/")
parser.add_argument("--lm", type=str, default='distilbert')
parser.add_argument("--bert_path", type=str, default=None)
parser.add_argument("--fp16", dest="fp16", action="store_true")
parser.add_argument("--finetuning", dest="finetuning", action="store_true")
parser.add_argument("--da", type=str, default=None)
parser.add_argument("--size", type=int, default=None)
parser.add_argument("--alpha_aug", type=float, default=0.8)
# for ssl
parser.add_argument("--alpha", type=float, default=0.2)
parser.add_argument("--num_aug", type=int, default=2)
parser.add_argument("--u_lambda", type=float, default=10.0)
# for no ssl ablation
parser.add_argument("--no_ssl", dest="no_ssl", action="store_true")
# for dataset balancing
parser.add_argument("--balance", dest="balance", action="store_true")
# warmup
parser.add_argument("--warmup", dest="warmup", action="store_true")
hp = parser.parse_args()
# set seed
seed = hp.run_id
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
# create the tag of the run
if hp.no_ssl:
run_tag = '%s_lm=%s_da=%s_no_ssl_alpha=%.1f_id=%d' % (hp.task, hp.lm, hp.da, hp.alpha_aug, hp.run_id)
else:
run_tag = '%s_lm=%s_da=%s_alpha=%.1f_id=%d' % (hp.task, hp.lm, hp.da, hp.alpha_aug, hp.run_id)
if hp.size is not None:
run_tag += '_size=%d' % hp.size
config, Dataset, TestDataset = get_cls_config(hp)
if hp.balance:
Dataset = partial(Dataset, balance=hp.balance)
task = config['name']
vocab = config['vocab']
trainset = config['trainset']
validset = config['validset']
testset = config['testset']
task_type = config['task_type']
if hp.da == 'edbt20':
trainset += '.no_header'
validset += '.no_header'
testset += '.no_header'
train_dataset = Dataset(trainset, vocab, task,
lm=hp.lm, max_len=hp.max_len, size=hp.size)
# valid_dataset = Dataset(validset, vocab, task,
valid_dataset = TestDataset(validset, vocab, task,
lm=hp.lm, max_len=hp.max_len, size=hp.size)
test_dataset = TestDataset(testset, vocab, task,
lm=hp.lm, max_len=hp.max_len)
# get default DA's
ops = get_ops(hp)
if hp.da is None or hp.da in ['None', 'edbt20']:
# No DA
from snippext.baseline import initialize_and_train
initialize_and_train(config,
train_dataset,
valid_dataset,
test_dataset,
hp,
run_tag)
elif 'auto_ssl' in hp.da or 'auto_filter_weight' in hp.da:
if 'em_' in task or 'compare' in task:
# a lightweight version for faster EM experiments
from rotom.auto_mixda import initialize_and_train
else:
from rotom.auto_filter_weight import initialize_and_train
# the augmented training set
w_aug_set = Dataset(trainset, vocab, task,
size=hp.size,
lm=hp.lm, max_len=hp.max_len, augment_op=ops[0])
s_aug_set = Dataset(trainset, vocab, task,
size=hp.size,
lm=hp.lm, max_len=hp.max_len, augment_op=ops[1])
# unlabeled dataset and augmented
unlabeled = config['unlabeled']
u_set = Dataset(unlabeled, vocab, task,
max_len=hp.max_len,
lm=hp.lm,
augment_op=ops[2],
size=10000)
# train the model
initialize_and_train(config,
train_dataset,
w_aug_set,
s_aug_set,
u_set,
valid_dataset,
test_dataset,
hp, run_tag)
else: # normal DA or InvDA
augment_dataset = Dataset(trainset, vocab, task,
lm=hp.lm, max_len=hp.max_len,
augment_op=hp.da, size=hp.size)
if abs(hp.alpha_aug) < 1e-6:
# no DA
from snippext.baseline import initialize_and_train
initialize_and_train(config,
augment_dataset,
valid_dataset,
test_dataset,
hp,
run_tag)
else:
# MixDA or InvDA
from snippext.mixda import initialize_and_train
initialize_and_train(config,
train_dataset,
augment_dataset,
valid_dataset,
test_dataset,
hp,
run_tag)