-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLambda_Optimizer.py
135 lines (119 loc) · 5.59 KB
/
Lambda_Optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Momentum for TensorFlow."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import ops
from tensorflow.python.ops import math_ops
from tensorflow.python.training import optimizer
from tensorflow.python.training import training_ops
from tensorflow.python.util.tf_export import tf_export
THRESHOLD = 5e-5
@tf_export("train.Softhre_MomentumOptimizer")
class Softhre_MomentumOptimizer(optimizer.Optimizer):
"""Optimizer that implements the Momentum algorithm.
Computes (if `use_nesterov = False`):
```
accumulation = momentum * accumulation + gradient
variable -= learning_rate * accumulation
```
Note that in the dense version of this algorithm, `accumulation` is updated
and applied regardless of a gradient's value, whereas the sparse version (when
the gradient is an `IndexedSlices`, typically because of `tf.gather` or an
embedding) only updates variable slices and corresponding `accumulation` terms
when that part of the variable was used in the forward pass.
"""
def __init__(self, learning_rate, momentum,
use_locking=False, name="Momentum", use_nesterov=False):
"""Construct a new Momentum optimizer.
Args:
learning_rate: A `Tensor` or a floating point value. The learning rate.
momentum: A `Tensor` or a floating point value. The momentum.
use_locking: If `True` use locks for update operations.
name: Optional name prefix for the operations created when applying
gradients. Defaults to "Momentum".
use_nesterov: If `True` use Nesterov Momentum.
See [Sutskever et al., 2013](
http://jmlr.org/proceedings/papers/v28/sutskever13.pdf).
This implementation always computes gradients at the value of the
variable(s) passed to the optimizer. Using Nesterov Momentum makes the
variable(s) track the values called `theta_t + mu*v_t` in the paper.
@compatibility(eager)
When eager execution is enabled, learning_rate and momentum can each be a
callable that takes no arguments and returns the actual value to use. This
can be useful for changing these values across different invocations of
optimizer functions.
@end_compatibility
"""
super(Softhre_MomentumOptimizer, self).__init__(use_locking, name)
self._learning_rate = learning_rate
self._momentum = momentum
self._use_nesterov = use_nesterov
def soft_tfresholding(input, thr):
zero_tensor = tf.zeros(input.get_shape().as_list(), input.dtype.base_dtype)
one_tensor = tf.ones(input.get_shape().as_list(), input.dtype.base_dtype)
return tf.sign(input) * tf.maximum(zero_tensor, tf.abs(input) - thr * one_tensor)
def _create_slots(self, var_list):
for v in var_list:
self._zeros_slot(v, "momentum", self._name)
def _prepare(self):
learning_rate = self._learning_rate
if callable(learning_rate):
learning_rate = learning_rate()
self._learning_rate_tensor = ops.convert_to_tensor(learning_rate,
name="learning_rate")
momentum = self._momentum
if callable(momentum):
momentum = momentum()
self._momentum_tensor = ops.convert_to_tensor(momentum, name="momentum")
def _apply_dense(self, grad, var):
mom = self.get_slot(var, "momentum")
apply_momentum_foo = training_ops.apply_momentum(
var, mom,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
grad,
math_ops.cast(self._momentum_tensor, var.dtype.base_dtype),
use_locking=self._use_locking,
use_nesterov=self._use_nesterov).op
# print('mom', apply_momentum_foo.get_shape())
return self.soft_tfresholding(apply_momentum_foo, THRESHOLD)
def _resource_apply_dense(self, grad, var):
mom = self.get_slot(var, "momentum")
return training_ops.resource_apply_momentum(
var.handle, mom.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
grad,
math_ops.cast(self._momentum_tensor, grad.dtype.base_dtype),
use_locking=self._use_locking,
use_nesterov=self._use_nesterov)
def _apply_sparse(self, grad, var):
mom = self.get_slot(var, "momentum")
return training_ops.sparse_apply_momentum(
var, mom,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
grad.values, grad.indices,
math_ops.cast(self._momentum_tensor, var.dtype.base_dtype),
use_locking=self._use_locking,
use_nesterov=self._use_nesterov).op
def _resource_apply_sparse(self, grad, var, indices):
mom = self.get_slot(var, "momentum")
return training_ops.resource_sparse_apply_momentum(
var.handle, mom.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype),
grad, indices,
math_ops.cast(self._momentum_tensor, grad.dtype),
use_locking=self._use_locking,
use_nesterov=self._use_nesterov)