-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsss_resnet50.py
468 lines (417 loc) · 20.8 KB
/
sss_resnet50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# -*-coding:utf-8-*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib import layers
from tensorflow.contrib.framework.python.ops import arg_scope
from tensorflow.contrib.layers.python.layers import layers as layers_lib
from tensorflow.contrib.layers.python.layers import regularizers
from tensorflow.contrib.layers.python.layers import utils
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import variable_scope
from tensorflow.contrib import slim
from tensorflow.contrib.slim.python.slim.nets.vgg import vgg_16
import resnet
import os
import h5py
import time
import sys
from tflearn.data_utils import shuffle
import numpy as np
from time import time
from config import FLAGS
M = FLAGS.num_class
k = 10
"""
""TEACHERNET
"""
def teacher(input_images,
keep_prob,
lambda_decay=FLAGS.lambda_decay,
is_training=True,
weight_decay=0.00004,
batch_norm_decay=0.99,
batch_norm_epsilon=0.001):
with tf.variable_scope("Teacher_model"):
net, endpoints = resnet.resnet_v2(inputs=input_images,
lambda_decay=lambda_decay,
num_classes=FLAGS.num_class,
is_training=True,
scope='resnet_v2_50')
# co_trained layers
var_scope = 'Teacher_model/resnet_v2_50/'
co_list_0 = slim.get_model_variables(var_scope + 'Conv2d_0')
# co_list_1 = slim.get_model_variables(var_scope +'InvertedResidual_16_')
# co_list_2 = slim.get_model_variables(var_scope +'InvertedResidual_24_')
t_co_list = co_list_0
base_var_list = slim.get_variables()
# for _ in range(2):
# base_var_list.pop()
lambda_c_list = slim.get_variables_by_name('lambda_c')
lambda_b_list = slim.get_variables_by_name('lambda_b')
t_lambda_list = lambda_c_list + lambda_b_list
# print(lambda_b_list)
# exit()
t_net_var_list =[]
for v in base_var_list:
if v not in t_co_list and v not in t_lambda_list:
t_net_var_list.append(v)
# feature & attention
t_g0 = endpoints["InvertedResidual_{}_{}".format(256, 2)]
t_at0 = tf.nn.l2_normalize(tf.reduce_sum(tf.square(t_g0), -1), axis=0, name='t_at0')
t_g1 = endpoints["InvertedResidual_{}_{}".format(512, 3)]
t_at1 = tf.nn.l2_normalize(tf.reduce_sum(tf.square(t_g1), -1), axis=0, name='t_at1')
part_feature = endpoints["InvertedResidual_{}_{}".format(1024, 5)]
t_at2 = tf.nn.l2_normalize(tf.reduce_sum(tf.square(part_feature), -1), axis=0, name='t_at2')
object_feature = endpoints["InvertedResidual_{}_{}".format(2048, 2)]
t_at3 = tf.nn.l2_normalize(tf.reduce_sum(tf.square(object_feature), -1), axis=0, name='t_at3')
# print(t_at1.get_shape().as_list())
# exit()
t_g = (t_g0, t_g1, part_feature, object_feature)
t_at = (t_at0, t_at1, t_at2, t_at3)
fc_obj = slim.max_pool2d(object_feature, (6, 8), scope="GMP1")
batch_norm_params = {
'center': True,
'scale': True,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
}
fc_obj = slim.conv2d(fc_obj,
M,
[1, 1],
activation_fn=None,
weights_regularizer=tf.contrib.layers.l2_regularizer(weight_decay),
biases_regularizer=tf.contrib.layers.l2_regularizer(weight_decay),
scope='fc_obj')
fc_obj = tf.nn.dropout(fc_obj, keep_prob=keep_prob)
fc_obj = slim.flatten(fc_obj)
#
fc_part = slim.conv2d(part_feature,
M * k, #卷积核个数
[1, 1], #卷积核高宽
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm, # 标准化器设置为BN
normalizer_params=batch_norm_params,
weights_regularizer=tf.contrib.layers.l2_regularizer(weight_decay),
biases_regularizer=tf.contrib.layers.l2_regularizer(weight_decay)
)
# print('part',fc_part.get_shape())
fc_part = slim.max_pool2d(fc_part, (12, 16), scope="GMP2")
ft_list = tf.split(fc_part,
num_or_size_splits=FLAGS.num_class,
axis=-1) #最后一维度(C)
cls_list = []
for i in range(M):
ft = tf.transpose(ft_list[i], [0, 1, 3, 2])
cls = layers_lib.pool(ft,
[1, 10],
"AVG")
cls = layers.flatten(cls)
cls_list.append(cls)
fc_ccp = tf.concat(cls_list, axis=-1) #cross_channel_pooling (N, M)
fc_part = slim.conv2d(fc_part,
FLAGS.num_class,
[1, 1],
activation_fn=None,
weights_regularizer=tf.contrib.layers.l2_regularizer(weight_decay),
biases_regularizer=tf.contrib.layers.l2_regularizer(weight_decay),
scope="fc_part")
fc_part = tf.nn.dropout(fc_part, keep_prob=keep_prob)
fc_part = slim.flatten(fc_part)
t_var_list = slim.get_model_variables()
t_fc_var_list = []
for var in t_var_list:
if var not in base_var_list:
t_fc_var_list.append(var)
return t_g, t_at, fc_obj, fc_part, fc_ccp, t_co_list, t_net_var_list, t_fc_var_list, t_lambda_list, t_var_list
def train(loss_val, net_list, fc_list, lambda_list, lr, clip_value):
opt = tf.train.MomentumOptimizer
# fc_optimizer = opt(learning_rate=lr, momentum=0.9, use_nesterov=True)
# net_optimizer = opt(learning_rate=lr * 0.01, momentum=0.9, use_nesterov=True)
# lambda_optimizer = opt(learning_rate=lr, momentum=0.9, use_nesterov=True)
# tower_lambda_grads = []
# tower_net_grads = []
# tower_fc_grads = []
# for i in [1, 7]:
# with tf.debice('/gpu:%d'%i)
# with tf.name_scope('GPU_%d'%i) as scope:
# #tf.get_variable的命名空间
# tf.get_variable_scope().reuse_variables()
# #使用当前gpu计算所有变量的梯度
# lambda_grads = tf.gradients(loss_val, lambda_list)
# net_grads = tf.gradients(loss_val, net_list)
# fc_grads = tf.gradients(loss_val, fc_list)
# clipped_net_grads = [(tf.clip_by_value(grad, -clip_value, clip_value), var) for grad, var in zip(net_grads, net_list) \
# if grad is not None]
# clipped_fc_grads = [(tf.clip_by_value(grad, -clip_value, clip_value), var) for grad, var in zip(fc_grads, fc_list) \
# if grad is not None]
# clipped_lambda_grads = [(tf.clip_by_value(grad, -clip_value, clip_value), var) for grad, var in zip(lambda_grads, lambda_list) \
# if grad is not None]
# tower_lambda_grads.append(lambda_grads)
# tower_net_grads.append(net_grads)
# tower_fc_grads.append(fc_grads)
# #计算变量的平均梯度
# lambda_grads = average_gradients(tower_lambda_grads)
# net_grads = average_gradients(tower_net_grads)
# fc_grads = average_gradients(tower_fc_grads)
# #使用平均梯度更新参数
# apply_gradient_op = opt.apply_gradients(grads,global_step = global)
fc_optimizer = opt(learning_rate=lr, momentum=0.9, use_nesterov=True)
net_optimizer = opt(learning_rate=lr * 0.01, momentum=0.9, use_nesterov=True)
lambda_optimizer = opt(learning_rate=lr, momentum=0.9, use_nesterov=True)
lambda_grads = tf.gradients(loss_val, lambda_list)
net_grads = tf.gradients(loss_val, net_list)
fc_grads = tf.gradients(loss_val, fc_list)
clipped_net_grads = [(tf.clip_by_value(grad, -clip_value, clip_value), var) for grad, var in zip(net_grads, net_list) \
if grad is not None]
clipped_fc_grads = [(tf.clip_by_value(grad, -clip_value, clip_value), var) for grad, var in zip(fc_grads, fc_list) \
if grad is not None]
clipped_lambda_grads = [(tf.clip_by_value(grad, -clip_value, clip_value), var) for grad, var in zip(lambda_grads, lambda_list) \
if grad is not None]
if FLAGS.debug:
for grad, var in clipped_fc_grads:
tf.summary.histogram(var.op.name + "/gradient", grad)
for grad, var in clipped_net_grads:
tf.summary.histogram(var.op.name + "/gradient", grad)
for grad, var in clipped_lambda_grads:
tf.summary.histogram(var.op.name + "/gradient", grad)
train_fc = fc_optimizer.apply_gradients(clipped_fc_grads)
train_net = net_optimizer.apply_gradients(clipped_net_grads)
train_lambda = lambda_optimizer.apply_gradients(clipped_lambda_grads)
train_op = tf.group(train_fc, train_net, train_lambda)
return train_op
def accuracy_top1(y_true, predictions):
acc_top1 = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y_true, axis=-1), tf.argmax(predictions, axis=-1)), tf.float32), axis=-1)
return acc_top1
def accuracy_top5(y_true, predictions):
acc_top5 = tf.reduce_mean(tf.cast(tf.nn.in_top_k(predictions, tf.argmax(y_true, axis=-1), k=5), tf.float32), axis=-1)
return acc_top5
def main(argv=None):
is_training = True
input_images = tf.placeholder(dtype=tf.float32,
shape=[FLAGS.batch_size, 192, 256, 3],
name="input_images")
y_true = tf.placeholder(dtype=tf.float32,
shape=[FLAGS.batch_size, FLAGS.num_class],
name="y_true")
keep_prob = tf.placeholder(dtype=tf.float32,
name="dropout")
learning_rate = tf.placeholder(dtype=tf.float64,
name="learning_rate")
clip_value = tf.placeholder(dtype=tf.float32,
name="clip_value")
"""
""inference
"""
t_g, t_at, fc_obj, fc_part, fc_ccp, t_co_list, t_net_var_list, t_fc_var_list, t_lambda_list, t_var_list= teacher(input_images, keep_prob, is_training=is_training)
fc_part = tf.nn.softmax(fc_part)
fc_ccp = tf.nn.softmax(fc_ccp)
fc_obj = tf.nn.softmax(fc_obj)
t_predictions = (fc_part + 0.1 * fc_ccp + fc_obj) / 3.0
"""
""teachernet loss
"""
if not FLAGS.mimic:
obj_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=fc_obj))
part_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=fc_part))
ccp_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=fc_ccp))
loss = 0.1 * ccp_loss + part_loss + obj_loss
acc_top1 = accuracy_top1(y_true, t_predictions)
acc_top5 = accuracy_top5(y_true, t_predictions)
"""
""Summary
"""
tf.summary.scalar("t_obj_loss", obj_loss)
tf.summary.scalar("t_part_loss", part_loss)
tf.summary.scalar("t_ccp_loss", ccp_loss)
tf.summary.scalar("t_loss", loss)
tf.summary.scalar("acc_top1", acc_top1)
tf.summary.scalar("acc_top5", acc_top5)
train_op = train(loss, t_net_var_list, t_fc_var_list, t_lambda_list, learning_rate, clip_value)
print("Setting up summary op...")
summary_op = tf.summary.merge_all()
"""
" Loading Data
"""
print("Loading Data......")
if FLAGS.mode == 'train':
with h5py.File(os.path.join(FLAGS.data_dir, "trainset.h5"), "r") as f:
X_train = f["X"][:]
Y_train = f["Y"][:]
print(X_train.shape)
print(Y_train.shape)
f.close()
print("\tLoaded Train Data......")
with h5py.File(os.path.join(FLAGS.data_dir, "testset.h5"), "r") as f:
X_test = f["X"][:]
Y_test = f["Y"][:]
print(X_test.shape)
print(Y_test.shape)
f.close()
print("\tLoaded Test Data......")
print("Verifying the data......")
# for i in range(100):
# if i*200 > 6000:
# break
# train_img = X_train[i*100]
# test_img = X_test[i*200]
# cv2.imshow("Train", np.uint8(train_img))
# cv2.imshow("Test", np.uint8(test_img))
#
# print(i, "Train class id", np.argmax(Y_train[i*100], axis=0))
# print(i, "Test class id", np.argmax(Y_test[i*200], axis=0))
# cv2.waitKey()
# exit()
"""
" Setting up Saver
"""
print("Setting up Saver...")
sess = tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)))
saver_t = tf.train.Saver(t_var_list, max_to_keep=3)
saver_t_co = tf.train.Saver(t_co_list, max_to_keep=3)
saver_t_lambda = tf.train.Saver(t_lambda_list, max_to_keep=3)
train_writer = tf.summary.FileWriter(os.path.join(FLAGS.t_s_logs_dir, 'train'),
sess.graph)
#改路径 FLAGS.train_dir
valid_writer = tf.summary.FileWriter(os.path.join(FLAGS.t_s_logs_dir, 'valid'),
sess.graph)
print("Initialize global variables")
sess.run(tf.global_variables_initializer())
"""
" Resume
"""
ckpt_t = tf.train.get_checkpoint_state(FLAGS.t_s_logs_dir)
if ckpt_t and ckpt_t.model_checkpoint_path:
print('teacher:', ckpt_t.model_checkpoint_path)
saver_t.restore(sess, ckpt_t.model_checkpoint_path)
saver_t_co.restore(sess, ckpt_t.model_checkpoint_path)
saver_t_lambda.restore(sess, ckpt_t.model_checkpoint_path)
print("Model restored...")
"""
" Training...
"""
if FLAGS.mode == 'train':
train_batch = int(X_train.shape[0] / FLAGS.batch_size)
valid_batch = int(X_test.shape[0] / FLAGS.batch_size)
last_loss = 10000.
patience = 0
best_acc = 0.0
clipvalue = 1e-3
global_step = tf.train.get_or_create_global_step()
epoch_st = global_step // train_batch + 1
current = 1e-3
for epoch in range(40, FLAGS.epoches if FLAGS.debug else 1):
print("Epoch %i ----> Starting......" % epoch)
X_train, Y_train = shuffle(X_train, Y_train)
start_time = time()
"""
" Build learning rate
"""
if epoch <= 20:
lr = 1e-3 / 20.0 * epoch
current = lr
elif epoch > 20 and epoch < 30:
lr = 1e-3
current = lr
else:
lr = current
for step in range(train_batch):
batch_x = X_train[step * FLAGS.batch_size: (step + 1) * FLAGS.batch_size]
batch_y = Y_train[step * FLAGS.batch_size: (step + 1) * FLAGS.batch_size]
summary, _ = sess.run([summary_op, train_op],
feed_dict={input_images: batch_x,
y_true: batch_y,
keep_prob: 0.3,
learning_rate: lr,
clip_value: clipvalue})
train_writer.add_summary(summary, step + train_batch * (epoch-1))
"""
' print the train loss
"""
if (epoch * train_batch + step) % FLAGS.verbose == 0:
if not FLAGS.mimic:
loss_t, loss_ct, loss_ot, loss_pt, acc_1t, acc_5t = \
sess.run([loss, ccp_loss, obj_loss, part_loss, acc_top1, acc_top5],
feed_dict={input_images: batch_x,
y_true: batch_y,
keep_prob: 0.3,
learning_rate: lr,
clip_value: clipvalue})
print("Step %i, Train_loss \33[91m%.4f\033[0m, ccp_loss %0.4f, obj_loss %0.4f, part_loss %0.4f, acc_1 \33[91m%.4f\033[0m, acc_5 %0.4f, lr: %.7f, clipvalue: %.7f" %
((epoch-1) * train_batch + step, loss_t, loss_ct, loss_ot, loss_pt, acc_1t, acc_5t, lr, clipvalue))
acc1_reg = []
acc5_reg = []
loss_reg = []
for step in range(valid_batch):
batch_x = X_test[step * FLAGS.batch_size: (step + 1) * FLAGS.batch_size]
batch_y = Y_test[step * FLAGS.batch_size: (step + 1) * FLAGS.batch_size]
loss_v, acc_1v, acc_5v, summary = sess.run([loss, acc_top1, acc_top5, summary_op],
feed_dict={input_images: batch_x,
y_true: batch_y,
keep_prob: 1.,
learning_rate: lr,
clip_value: clipvalue})
valid_writer.add_summary(summary, step + valid_batch * (epoch-1))
acc1_reg.append(acc_1v)
acc5_reg.append(acc_5v)
loss_reg.append(loss_v)
avg_acc1 = np.mean(np.array(acc1_reg))
avg_acc5 = np.mean(np.array(acc5_reg))
avg_loss = np.mean(np.array(loss_reg))
print("Valid_loss ----> %0.4f Valid_acc ----> %0.4f, %0.4f" % (avg_loss, avg_acc1, avg_acc5))
"""
" Save the best model
"""
if avg_acc1 > best_acc:
best_acc = avg_acc1
saver_t.save(sess=sess,
save_path=FLAGS.t_s_logs_dir,
global_step=epoch)
print("Save the best model with val_acc %0.4f" % best_acc)
else:
print("Val_acc stay with val_acc %0.4f" % best_acc)
if last_loss - avg_loss > 1e-5 and avg_loss - last_loss < 1e-5:
last_loss = avg_loss
patience = 0
print("Patience %i with updated val_loss %0.4f" % (patience, last_loss))
else:
patience = patience + 1
print("Patience %i with stayed val_loss %0.4f" % (patience, last_loss))
if patience >= FLAGS.patience:
patience = 0
last_loss = 10000
current = current * 0.5
clipvalue = clipvalue * 0.1
print("Lr decay, update the learning rate when lr = %0.4f" % lr)
end_time = time()
print("Epoch %i ----> Ended in %0.4f" % (epoch, end_time - start_time))
train_writer.close()
valid_writer.close()
print("......Ended")
print("Ending......")
if FLAGS.mode =='test':
acc1_reg = []
acc5_reg = []
loss_reg = []
for step in range(valid_batch):
batch_x = X_test[step * FLAGS.batch_size: (step + 1) * FLAGS.batch_size]
batch_y = Y_test[step * FLAGS.batch_size: (step + 1) * FLAGS.batch_size]
loss_v, acc_1v, acc_5v, summary = sess.run([loss, acc_top1, acc_top5, summary_op],
feed_dict={input_images: batch_x,
y_true: batch_y,
keep_prob: 1.,
learning_rate: lr,
clip_value: clipvalue})
valid_writer.add_summary(summary, step + valid_batch * (epoch-1))
acc1_reg.append(acc_1v)
acc5_reg.append(acc_5v)
loss_reg.append(loss_v)
avg_acc1 = np.mean(np.array(acc1_reg))
avg_acc5 = np.mean(np.array(acc5_reg))
avg_loss = np.mean(np.array(loss_reg))
print("Valid_loss ----> %0.4f Valid_acc ----> %0.4f, %0.4f" % (avg_loss, avg_acc1, avg_acc5))
if __name__ == "__main__":
tf.app.run()