@@ -483,6 +483,7 @@ struct vk_device_struct {
483
483
vk_pipeline pipeline_rwkv_wkv6_f32;
484
484
vk_pipeline pipeline_rwkv_wkv7_f32;
485
485
vk_pipeline pipeline_opt_step_adamw_f32;
486
+ vk_pipeline pipeline_conv2d_f32;
486
487
vk_pipeline pipeline_conv2d_dw_whcn_f32;
487
488
vk_pipeline pipeline_conv2d_dw_cwhn_f32;
488
489
@@ -876,6 +877,38 @@ struct vk_op_rwkv_wkv7_push_constants {
876
877
uint32_t H;
877
878
};
878
879
880
+ struct vk_op_conv2d_push_constants {
881
+ uint32_t Cout;
882
+ uint32_t Cin;
883
+ uint32_t N;
884
+
885
+ uint32_t KW;
886
+ uint32_t KH;
887
+ uint32_t W;
888
+ uint32_t H;
889
+ uint32_t OW;
890
+ uint32_t OH;
891
+
892
+ uint32_t s0;
893
+ uint32_t s1;
894
+ uint32_t p0;
895
+ uint32_t p1;
896
+ uint32_t d0;
897
+ uint32_t d1;
898
+
899
+ uint32_t nb01;
900
+ uint32_t nb02;
901
+ uint32_t nb03;
902
+
903
+ uint32_t nb11;
904
+ uint32_t nb12;
905
+ uint32_t nb13;
906
+
907
+ uint32_t nb1;
908
+ uint32_t nb2;
909
+ uint32_t nb3;
910
+ };
911
+
879
912
struct vk_op_conv2d_dw_push_constants {
880
913
uint32_t ne;
881
914
uint32_t batches;
@@ -975,18 +1008,45 @@ class vk_memory_logger {
975
1008
#endif // GGML_VULKAN_MEMORY_DEBUG
976
1009
977
1010
class vk_perf_logger {
978
- public:
1011
+ public:
979
1012
void print_timings() {
1013
+ if (timings.empty()) {
1014
+ return;
1015
+ }
1016
+ uint64_t total_all_op_times = 0;
980
1017
std::cerr << "----------------\nVulkan Timings:" << std::endl;
981
- for (const auto& t : timings) {
982
- uint64_t total = 0;
983
- for (const auto& time : t.second) {
984
- total += time;
1018
+ for (const auto & t : timings) {
1019
+ uint64_t total_op_times = 0;
1020
+ for (const auto & time : t.second) {
1021
+ total_op_times += time;
1022
+ }
1023
+ std::cerr << t.first << ": " << t.second.size() << " x " << (total_op_times / t.second.size() / 1000.0)
1024
+ << " us";
1025
+
1026
+ // If we have as many flops entries as timing entries for the op, then compute and log the flops/S.
1027
+ auto it = flops.find(t.first);
1028
+ if (it != flops.end() && (it->second).size() == t.second.size()) {
1029
+ uint64_t total_op_flops = 0;
1030
+ for (const auto & elem : it->second) {
1031
+ total_op_flops += elem;
1032
+ }
1033
+ std::cerr << " ("
1034
+ << (double(total_op_flops) / (1000.0 * 1000.0 * 1000.0)) /
1035
+ (double(total_op_times) / (1000.0 * 1000.0 * 1000.0))
1036
+ << " GFLOPS/s)";
985
1037
}
986
- std::cerr << t.first << ": " << t.second.size() << " x " << (total / t.second.size() / 1000.0) << " us" << std::endl;
1038
+
1039
+ total_all_op_times += total_op_times;
1040
+
1041
+ std::cerr << std::endl;
1042
+ }
1043
+
1044
+ if (timings.size() > 0) {
1045
+ std::cerr << "Total time: " << total_all_op_times / 1000.0 << " us." << std::endl;
987
1046
}
988
1047
989
1048
timings.clear();
1049
+ flops.clear();
990
1050
}
991
1051
992
1052
void log_timing(const ggml_tensor * node, uint64_t time) {
@@ -995,22 +1055,45 @@ class vk_perf_logger {
995
1055
return;
996
1056
}
997
1057
if (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID) {
998
- const uint64_t m = node->src[0]->ne[1];
999
- const uint64_t n = node->src[1]->ne[1];
1000
- const uint64_t k = node->src[1]->ne[0];
1001
- std::string name = ggml_op_name(node->op);
1058
+ const uint64_t m = node->src[0]->ne[1];
1059
+ const uint64_t n = node->src[1]->ne[1];
1060
+ const uint64_t k = node->src[1]->ne[0];
1061
+ std::string name = ggml_op_name(node->op);
1002
1062
if (n == 1) {
1003
1063
name += "_VEC m=" + std::to_string(m) + " k=" + std::to_string(k);
1004
1064
} else {
1005
1065
name += " m=" + std::to_string(m) + " n=" + std::to_string(n) + " k=" + std::to_string(k);
1006
1066
}
1007
1067
timings[name].push_back(time);
1068
+ flops[name].push_back(m * n * (k + (k - 1)));
1069
+ return;
1070
+ }
1071
+ if (node->op == GGML_OP_CONV_2D) {
1072
+ std::string name = ggml_op_name(node->op);
1073
+ ggml_tensor * knl = node->src[0];
1074
+ uint64_t OW = node->ne[0];
1075
+ uint64_t OH = node->ne[1];
1076
+ uint64_t N = node->ne[3];
1077
+ uint64_t Cout = node->ne[2];
1078
+ uint64_t KW = knl->ne[0];
1079
+ uint64_t KH = knl->ne[1];
1080
+ uint64_t Cin = knl->ne[2];
1081
+ // KxCRS @ CRSxNPQ = KxNPQ -> M=K, K=CRS, N=NPQ
1082
+ uint64_t size_M = Cout;
1083
+ uint64_t size_K = Cin * KW * KH;
1084
+ uint64_t size_N = N * OW * OH;
1085
+ uint64_t n_flops = size_M * size_N * (size_K + (size_K - 1));
1086
+ name += " M=Cout=" + std::to_string(size_M) + ", K=Cin*KW*KH=" + std::to_string(size_K) +
1087
+ ", N=N*OW*OH=" + std::to_string(size_N);
1088
+ flops[name].push_back(n_flops);
1089
+ timings[name].push_back(time);
1008
1090
return;
1009
1091
}
1010
1092
timings[ggml_op_name(node->op)].push_back(time);
1011
1093
}
1012
- private:
1094
+ private:
1013
1095
std::map<std::string, std::vector<uint64_t>> timings;
1096
+ std::map<std::string, std::vector<uint64_t>> flops;
1014
1097
};
1015
1098
1016
1099
struct ggml_backend_vk_context {
@@ -2113,6 +2196,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
2113
2196
}
2114
2197
compile_count++;
2115
2198
}
2199
+
2116
2200
compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), spv_size, spv_data, entrypoint,
2117
2201
parameter_count, wg_denoms, specialization_constants, disable_robustness, require_full_subgroups, required_subgroup_size));
2118
2202
};
@@ -2962,6 +3046,42 @@ static void ggml_vk_load_shaders(vk_device& device) {
2962
3046
2963
3047
ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
2964
3048
3049
+ // conv2d
3050
+ uint32_t conv2d_WG_SIZE = 256;
3051
+ uint32_t conv2d_BS_K = 128;
3052
+ uint32_t conv2d_BS_CRS = 16;
3053
+ uint32_t use_collectives = 0; // Enables subgroup ops for preventing the re-calculation of indices.
3054
+ if (device->subgroup_shuffle &&
3055
+ device->vendor_id != VK_VENDOR_ID_INTEL) { // Do not enable collectives on Intel, see PR 14316
3056
+ use_collectives = 1;
3057
+ conv2d_BS_CRS = std::min(
3058
+ device->subgroup_size,
3059
+ conv2d_BS_CRS); // CRS block size should be capped at sugroup size for correctness when shuffle is used.
3060
+ }
3061
+ uint32_t conv2d_BS_NPQ = 128;
3062
+ uint32_t conv2d_TS_K = 8;
3063
+ uint32_t conv2d_shmem_req =
3064
+ (conv2d_BS_K * (conv2d_BS_CRS + 1) + conv2d_BS_CRS * (conv2d_BS_NPQ + 1)) * sizeof(float);
3065
+ if (device->properties.limits.maxComputeSharedMemorySize < conv2d_shmem_req) {
3066
+ conv2d_BS_CRS = 8;
3067
+ if (use_collectives) {
3068
+ conv2d_BS_CRS = std::min(device->subgroup_size, conv2d_BS_CRS);
3069
+ }
3070
+ }
3071
+
3072
+ if (use_collectives) {
3073
+ ggml_vk_create_pipeline(
3074
+ device, device->pipeline_conv2d_f32, "conv2d_f32", conv2d_f32_len, conv2d_f32_data, "main", 3,
3075
+ sizeof(vk_op_conv2d_push_constants), { conv2d_BS_K, conv2d_BS_NPQ, 1 },
3076
+ { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives }, 1, true, true);
3077
+ } else {
3078
+ ggml_vk_create_pipeline(
3079
+ device, device->pipeline_conv2d_f32, "conv2d_f32", conv2d_f32_len, conv2d_f32_data, "main", 3,
3080
+ sizeof(vk_op_conv2d_push_constants), { conv2d_BS_K, conv2d_BS_NPQ, 1 },
3081
+ { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives }, 1, true,
3082
+ false);
3083
+ }
3084
+
2965
3085
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f32, "conv2d_dw_whcn_f32", conv2d_dw_whcn_f32_len, conv2d_dw_whcn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
2966
3086
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f32, "conv2d_dw_cwhn_f32", conv2d_dw_cwhn_f32_len, conv2d_dw_cwhn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
2967
3087
@@ -6837,6 +6957,12 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
6837
6957
return ctx->device->pipeline_leaky_relu_f32;
6838
6958
}
6839
6959
return nullptr;
6960
+ case GGML_OP_CONV_2D:
6961
+ if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
6962
+ ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
6963
+ return ctx->device->pipeline_conv2d_f32;
6964
+ }
6965
+ return nullptr;
6840
6966
case GGML_OP_CONV_2D_DW:
6841
6967
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
6842
6968
if (ggml_is_contiguous(src1)) {
@@ -7159,6 +7285,31 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
7159
7285
const uint32_t OW = dst->ne[0];
7160
7286
elements = { N * OC * OH * OW, 1, 1};
7161
7287
} break;
7288
+ case GGML_OP_CONV_2D:
7289
+ {
7290
+ // src0 - kernel: [KW, KH, Cin, Cout]
7291
+ // src1 - input: [W, H, Cin, N]
7292
+ // dst - result: [OW, OH, Cout, N]
7293
+
7294
+ // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
7295
+ auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
7296
+ return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
7297
+ };
7298
+ // parallelize in {OW/BS_K, OH/BS_NPQ, 1}
7299
+ int64_t W = src1->ne[0];
7300
+ int64_t H = src1->ne[1];
7301
+ int64_t KW = src0->ne[0];
7302
+ int64_t KH = src0->ne[1];
7303
+ int64_t Cout = src0->ne[3];
7304
+ int64_t N = src1->ne[3];
7305
+ int64_t OH = calc_conv_output_size(H, KH, dst->op_params[1], dst->op_params[3], dst->op_params[5]);
7306
+ int64_t OW = calc_conv_output_size(W, KW, dst->op_params[0], dst->op_params[2], dst->op_params[4]);
7307
+ int64_t NPQ = N * OW * OH;
7308
+
7309
+ // Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups
7310
+ elements = { static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1 };
7311
+ }
7312
+ break;
7162
7313
case GGML_OP_ADD:
7163
7314
case GGML_OP_SUB:
7164
7315
case GGML_OP_DIV:
@@ -8025,6 +8176,55 @@ static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, c
8025
8176
}, dryrun);
8026
8177
}
8027
8178
8179
+ static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context & subctx, const ggml_tensor * src0,
8180
+ const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
8181
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
8182
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
8183
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
8184
+
8185
+ GGML_TENSOR_BINARY_OP_LOCALS
8186
+
8187
+ GGML_ASSERT(nb00 == sizeof(float));
8188
+ GGML_ASSERT(nb10 == sizeof(float));
8189
+ GGML_ASSERT(nb0 == sizeof(float));
8190
+
8191
+ vk_op_conv2d_push_constants p{};
8192
+ p.Cout = static_cast<uint32_t>(ne03);
8193
+ p.Cin = static_cast<uint32_t>(ne02);
8194
+ p.N = static_cast<uint32_t>(ne13);
8195
+
8196
+ p.KW = static_cast<uint32_t>(ne00);
8197
+ p.KH = static_cast<uint32_t>(ne01);
8198
+ p.W = static_cast<uint32_t>(ne10);
8199
+ p.H = static_cast<uint32_t>(ne11);
8200
+ p.OW = static_cast<uint32_t>(ne0);
8201
+ p.OH = static_cast<uint32_t>(ne1);
8202
+
8203
+ p.s0 = static_cast<uint32_t>(dst->op_params[0]);
8204
+ p.s1 = static_cast<uint32_t>(dst->op_params[1]);
8205
+ p.p0 = static_cast<uint32_t>(dst->op_params[2]);
8206
+ p.p1 = static_cast<uint32_t>(dst->op_params[3]);
8207
+ p.d0 = static_cast<uint32_t>(dst->op_params[4]);
8208
+ p.d1 = static_cast<uint32_t>(dst->op_params[5]);
8209
+
8210
+ p.nb01 = static_cast<uint32_t>(nb01 / nb00);
8211
+ p.nb02 = static_cast<uint32_t>(nb02 / nb00);
8212
+ p.nb03 = static_cast<uint32_t>(nb03 / nb00);
8213
+
8214
+ p.nb11 = static_cast<uint32_t>(nb11 / nb10);
8215
+ p.nb12 = static_cast<uint32_t>(nb12 / nb10);
8216
+ p.nb13 = static_cast<uint32_t>(nb13 / nb10);
8217
+
8218
+ p.nb1 = static_cast<uint32_t>(nb1 / nb0);
8219
+ p.nb2 = static_cast<uint32_t>(nb2 / nb0);
8220
+ p.nb3 = static_cast<uint32_t>(nb3 / nb0);
8221
+
8222
+ GGML_ASSERT(ne03 == ne2);
8223
+ GGML_ASSERT(ne02 == ne12);
8224
+
8225
+ ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_2D, std::move(p), dryrun);
8226
+ }
8227
+
8028
8228
static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
8029
8229
vk_op_conv2d_dw_push_constants p{};
8030
8230
p.ne = ggml_nelements(dst);
@@ -9087,6 +9287,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
9087
9287
case GGML_OP_TIMESTEP_EMBEDDING:
9088
9288
case GGML_OP_CONV_TRANSPOSE_1D:
9089
9289
case GGML_OP_POOL_2D:
9290
+ case GGML_OP_CONV_2D:
9090
9291
case GGML_OP_CONV_2D_DW:
9091
9292
case GGML_OP_RWKV_WKV6:
9092
9293
case GGML_OP_RWKV_WKV7:
@@ -9154,6 +9355,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
9154
9355
case GGML_OP_TIMESTEP_EMBEDDING:
9155
9356
case GGML_OP_CONV_TRANSPOSE_1D:
9156
9357
case GGML_OP_POOL_2D:
9358
+ case GGML_OP_CONV_2D:
9157
9359
case GGML_OP_CONV_2D_DW:
9158
9360
case GGML_OP_LEAKY_RELU:
9159
9361
{
@@ -9360,6 +9562,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
9360
9562
case GGML_OP_POOL_2D:
9361
9563
ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
9362
9564
9565
+ break;
9566
+ case GGML_OP_CONV_2D:
9567
+ ggml_vk_conv_2d(ctx, compute_ctx, src0, src1, node, dryrun);
9568
+
9363
9569
break;
9364
9570
case GGML_OP_CONV_2D_DW:
9365
9571
ggml_vk_conv_2d_dw(ctx, compute_ctx, src0, src1, node, dryrun);
@@ -9490,6 +9696,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
9490
9696
case GGML_OP_TIMESTEP_EMBEDDING:
9491
9697
case GGML_OP_CONV_TRANSPOSE_1D:
9492
9698
case GGML_OP_POOL_2D:
9699
+ case GGML_OP_CONV_2D:
9493
9700
case GGML_OP_CONV_2D_DW:
9494
9701
case GGML_OP_RWKV_WKV6:
9495
9702
case GGML_OP_RWKV_WKV7:
@@ -10071,6 +10278,12 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
10071
10278
ggml_vk_build_graph(ctx, cgraph, i, nullptr, 0, true, false, false, false);
10072
10279
if (cgraph->nodes[i]->op == GGML_OP_MUL_MAT || cgraph->nodes[i]->op == GGML_OP_MUL_MAT_ID) {
10073
10280
total_mat_mul_bytes += ggml_nbytes(cgraph->nodes[i]->src[0]);
10281
+ } else if (cgraph->nodes[i]->op == GGML_OP_CONV_2D) {
10282
+ // Return CRSxNPQxsizeof(*) to account as many bytes as mul_mat has in im2col->mul_mat mode.
10283
+ auto CRS_size =
10284
+ cgraph->nodes[i]->src[0]->ne[0] * cgraph->nodes[i]->src[0]->ne[1] * cgraph->nodes[i]->src[0]->ne[2];
10285
+ auto NPQ_size = cgraph->nodes[i]->ne[0] * cgraph->nodes[i]->ne[1] * cgraph->nodes[i]->ne[3];
10286
+ total_mat_mul_bytes += NPQ_size * CRS_size * ggml_type_size(cgraph->nodes[i]->type);
10074
10287
}
10075
10288
i += ctx->num_additional_fused_ops;
10076
10289
ctx->num_additional_fused_ops = 0;
@@ -10647,6 +10860,20 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
10647
10860
return true;
10648
10861
case GGML_OP_CONV_TRANSPOSE_1D:
10649
10862
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
10863
+ case GGML_OP_CONV_2D:
10864
+ {
10865
+ // Op is disabled for Apple because it segfaults at pipeline create time on MoltenVK
10866
+ ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
10867
+ const vk_device& device = ggml_vk_get_device(ctx->device);
10868
+ bool is_Apple = ggml_vk_get_device(ctx->device)->vendor_id == VK_VENDOR_ID_APPLE;
10869
+ // Channel-contiguous format is not supported yet.
10870
+ return (op->src[0]->type == GGML_TYPE_F32 &&
10871
+ op->src[1]->type == GGML_TYPE_F32 &&
10872
+ op->type == GGML_TYPE_F32 &&
10873
+ ggml_is_contiguous(op->src[0]) &&
10874
+ ggml_is_contiguous(op->src[1]) &&
10875
+ ggml_is_contiguous(op)) && !is_Apple;
10876
+ }
10650
10877
default:
10651
10878
return false;
10652
10879
}
@@ -11205,6 +11432,14 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
11205
11432
const int32_t p1 = tensor->op_params[6];
11206
11433
11207
11434
tensor_clone = ggml_pool_2d(ggml_ctx, src_clone[0], op, k0, k1, s0, s1, p0, p1);
11435
+ } else if (tensor->op == GGML_OP_CONV_2D) {
11436
+ const int32_t s0 = tensor->op_params[0];
11437
+ const int32_t s1 = tensor->op_params[1];
11438
+ const int32_t p0 = tensor->op_params[2];
11439
+ const int32_t p1 = tensor->op_params[3];
11440
+ const int32_t d0 = tensor->op_params[4];
11441
+ const int32_t d1 = tensor->op_params[5];
11442
+ tensor_clone = ggml_conv_2d(ggml_ctx, src_clone[0], src_clone[1], s0, s1, p0, p1, d0, d1);
11208
11443
} else if (tensor->op == GGML_OP_LEAKY_RELU) {
11209
11444
const float * op_params = (const float *)tensor->op_params;
11210
11445
tensor_clone = ggml_leaky_relu(ggml_ctx, src_clone[0], op_params[0], false);
0 commit comments