forked from jzhoulab/orca
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolormaps.py
executable file
·115 lines (100 loc) · 3.01 KB
/
colormaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""
Common and custom colormaps for plotting.
"""
import copy
from matplotlib.colors import colorConverter
import matplotlib
import matplotlib as mpl
import matplotlib.cm
import numpy as np
viridis_cmap = copy.copy(matplotlib.cm.get_cmap("viridis"))
viridis_cmap.set_bad(color="#AAAAAA")
ylorrd_cmap = copy.copy(matplotlib.cm.get_cmap("YlOrRd"))
ylorrd_cmap.set_bad(color="#AAAAAA")
cdict = {
"red": [
(0.0, 1.0, 1.0),
(0.25, 245 / 255, 245 / 255),
(0.5, 208 / 255, 208 / 255),
(1.0, 0.0, 0.0),
],
"green": [
(0.0, 1.0, 1.0),
(0.25, 166 / 255, 166 / 255),
(0.5, 2 / 255, 2 / 255),
(1.0, 0.0, 0.0),
],
"blue": [
(0.0, 1.0, 1.0),
(0.25, 35 / 255, 35 / 255),
(0.5, 7 / 255, 7 / 255),
(1.0, 0.0, 0.0),
],
}
fall_cmap = matplotlib.colors.LinearSegmentedColormap("fall", cdict, 256)
newcmap2 = mpl.colors.LinearSegmentedColormap.from_list(
"newcmap2",
[
colorConverter.to_rgba(c)
for c in ["#fff1d7", "#ffda9d", "#ffb362", "#ff8241", "#ff2b29", "#d60026", "#880028",]
],
256,
)
newcmap2._init()
newcmap2.set_bad(color="#AAAAAA")
hnh_cmap = mpl.colors.LinearSegmentedColormap.from_list(
"hnhcmap",
0.5 * newcmap2(np.linspace(0.0, 1, 256)) + 0.5 * ylorrd_cmap(np.linspace(0.0, 1, 256)),
256,
)
hnh_cmap.set_bad(color="#AAAAAA")
hnh_cmap_ext = mpl.colors.LinearSegmentedColormap.from_list(
"hnh_cmap_ext",
np.vstack(
[
np.vstack(
[
np.ones(34),
np.concatenate(
[np.arange(0.97254902, 1, 0.97254902 - 0.97038062), np.ones(21)]
),
np.arange(0.82156863, 1, 0.82156863 - 0.81618608),
np.ones(34),
]
).T[::-1, :][:-1, :],
hnh_cmap(np.linspace(0.0, 1, 256)),
]
),
)
hnh_cmap_ext.set_bad(color="#AAAAAA")
hnh_cmap_ext3 = mpl.colors.LinearSegmentedColormap.from_list(
"hnh_cmap_ext3",
np.vstack(
[
hnh_cmap_ext(np.linspace(0.0, 1, 256)),
np.vstack(
[
np.arange(0.51764706, 0.15294118, 0.51764706 - 0.52594939),
np.zeros(44),
np.ones(44) * 0.15294118,
np.ones(44),
]
).T[1:, :],
]
),
)
hnh_cmap_ext3.set_bad(color="#AAAAAA")
hnh_cmap_ext4 = mpl.colors.LinearSegmentedColormap.from_list(
"hnh_cmap_ext4", hnh_cmap_ext3(np.linspace(0.0, 1, 512))[16:, :]
)
hnh_cmap_ext4.set_bad(color="#AAAAAA")
hnh_cmap_ext5 = mpl.colors.LinearSegmentedColormap.from_list(
"hnh_cmap_ext5", hnh_cmap_ext3(np.linspace(0.0, 1, 512))[32:, :]
)
hnh_cmap_ext5.set_bad(color="#AAAAAA")
color1 = colorConverter.to_rgba("white")
color2 = colorConverter.to_rgba("black")
bwcmap = mpl.colors.LinearSegmentedColormap.from_list("bwcmap", [color1, color2], 256)
bwcmap._init()
alphas = np.linspace(0, 0.2, bwcmap.N + 3)
bwcmap._lut[:, -1] = alphas