This repository was archived by the owner on Jul 13, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluation.py
179 lines (129 loc) · 3.78 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Implementation of the evaluation procedure of the deep learning models.
"""
###########
# Imports #
###########
import csv
import numpy as np
import os
import torch
from functools import partial
from sklearn.metrics import precision_score, recall_score
from torch.utils.data import DataLoader
from tqdm import tqdm
from typing import Iterable
from .datasets import ClassDataset, ImageDataset
from .models import DenseNet, SmallConvNet, UNet
##########
# Typing #
##########
Tensors = Iterable[torch.Tensor]
#############
# Functions #
#############
# Utilities
def _to_class(t: Tensors) -> Tensors:
return torch.argmax(t, dim=1)
def _tensorify(t: torch.Tensor) -> torch.Tensor:
return torch.tensor(t.size())
def _flatten(t: Tensors) -> Tensors:
n = len(list(t.size()))
return torch.flatten(torch.argmax(t, dim=1)) if n > 1 else t
# Evaluation
def pr_eval(outputs: Tensors, targets: Tensors) -> list:
"""
Compute precision and recall evaluation metrics.
"""
# Transform probabilities to class
transform = torch.equal(
_tensorify(outputs),
_tensorify(targets)
)
outputs = _to_class(outputs)
if transform:
targets = _to_class(targets)
# Flatten
outputs = _flatten(outputs)
targets = _flatten(targets)
# Evaluate
args = {
'y_true': targets,
'y_pred': outputs,
'average': 'weighted',
'zero_division': 0
}
p = precision_score(**args)
r = recall_score(**args)
return [p, r]
# Main
def evaluate(
outputs_pth: str = 'outputs/',
dataset_id: str = 'class',
test_pth: str = 'test.json',
model_id: str = 'densenet161',
edges: bool = False,
batch_size: int = 16,
out_channels: int = 2,
weights_pth: str = 'weights.pth',
metric_id: str = 'pr'
):
# Device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
print(f'Device: {device}')
# Output folder
os.makedirs(os.path.dirname(outputs_pth), exist_ok=True)
# Data set and data loader
print('Loading data set...')
datasets = {
'class': ClassDataset,
'image': ImageDataset
}
testset = datasets.get(dataset_id, 'class')(
json_pth=test_pth,
edges=edges
)
loader = DataLoader(
testset,
batch_size=batch_size,
pin_memory=torch.cuda.is_available()
)
# Model
models = {
'densenet121': partial(DenseNet, densenet_id='121'),
'densenet161': partial(DenseNet, densenet_id='161'),
'small': SmallConvNet,
'unet': UNet
}
inpt, _ = testset[0]
in_channels = inpt.size()[0]
model = models.get(model_id, 'densenet121')(in_channels, out_channels)
model = model.to(device)
model.load_state_dict(torch.load(weights_pth, map_location=device))
model.eval()
# Evaluation
metrics = {
'pr': pr_eval
}
evaluate = metrics.get(metric_id, 'pr')
values = []
with torch.no_grad():
for inputs, targets in tqdm(loader):
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
metric = evaluate(outputs.cpu(), targets.cpu())
values.append(metric)
# Save data
stats_pth = os.path.join(outputs_pth, 'evaluate.csv')
stats_headers = {
'pr': ['precision_mean', 'recall_mean', 'precision_std', 'recall_std']
}
stats_header = stats_headers.get(metric_id, 'pr')
metric_mean = np.mean(values, axis=0)
metric_std = np.std(values, axis=0)
with open(stats_pth, 'w', newline='') as f:
csv.writer(f).writerow(stats_header)
csv.writer(f).writerow(list(np.concatenate((metric_mean, metric_std))))