This repository was archived by the owner on Jul 13, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodels.py
329 lines (245 loc) · 7.3 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""
Implementation of the deep learning models.
"""
###########
# Imports #
###########
import torch
import torch.nn as nn
from typing import Iterable
##########
# Typing #
##########
Tensors = Iterable[torch.Tensor]
###########
# Classes #
###########
# Generic classes
class Conv(nn.Sequential):
"""
Implementation of a generic convolution layer.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 1,
stride: int = 1,
padding: int = 0
):
super().__init__(
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
class DoubleConv(nn.Sequential):
"""
Implementation of a generic double convolution layer.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 3,
stride: int = 1,
padding: int = 1
):
super().__init__(
Conv(in_channels, out_channels, kernel_size, stride, padding),
Conv(out_channels, out_channels, kernel_size, stride, padding)
)
class Dense(nn.Sequential):
"""
Implementation of a generic dense layer.
"""
def __init__(
self,
in_features: int,
out_features: int
):
super().__init__(
nn.Linear(in_features, out_features),
nn.ReLU(inplace=True)
)
# Models
class DenseNet(nn.Module):
"""
Implementation of modified versions of DenseNet models.
Last classification layer has been replaced by convolutions layers
followed by 1 fully connected one.
DenseNet models are used to predict class associated to input image.
Input images must be in 320 x 180.
Available DenseNet models are: '121' and '161' (values for 'densenet_id').
"""
def __init__(
self,
in_channels: int,
out_channels: int,
densenet_id: str = '121',
freeze: bool = False
):
super().__init__()
# Normalization
self.register_buffer(
'mean',
torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1)
)
self.register_buffer(
'std',
torch.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1)
)
# Pre trained original DenseNet
self.densenet = torch.hub.load(
'pytorch/vision:v0.8.1',
f'densenet{densenet_id}',
pretrained=True
)
# Remove last layer
self.densenet = nn.Sequential(*list(self.densenet.features))
# Freeze pre-trained model, if necessary
if freeze:
for param in self.densenet.parameters():
param.requires_grad = False
# New layers
self.first = Conv(in_channels, 3)
self.convs = nn.ModuleList([
Conv(1024, 128, kernel_size=5),
Conv(128, 16)
])
if densenet_id == '161':
self.convs.insert(0, Conv(2208, 1024))
self.last = nn.Sequential(
nn.Flatten(),
nn.Linear(16 * 1 * 6, out_channels),
nn.Softmax(dim=1)
)
def forward(self, x: Tensors) -> Tensors:
x = self.first(x)
x = (x - self.mean) / self.std
x = self.densenet(x)
for conv in self.convs:
x = conv(x)
x = self.last(x)
return x
class SmallConvNet(nn.Module):
"""
Implementation of a small convolution network for image classification.
This model is used to predict class associated to input image.
Input images must be in 320 x 180.
"""
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
# First layer
self.first = Conv(in_channels, 3)
# Convolutional layers
self.convs = nn.ModuleList([
DoubleConv(3, 32),
DoubleConv(32, 32),
DoubleConv(32, 64),
DoubleConv(64, 64),
DoubleConv(64, 128),
])
# Max pool layer
self.max_pool = nn.MaxPool2d(2, ceil_mode=True)
# Drop out layer
self.drop_out = nn.Dropout(p=0.8)
# Flatten layer
self.flatten = nn.Flatten()
# Dense layers
self.denses = nn.ModuleList(
[
Dense(7680, 4096),
Dense(4096, 2048),
Dense(2048, 128)
] + [Dense(128, 128) for i in range(5)]
)
# Last layers
self.last = nn.Sequential(
nn.Linear(128, out_channels),
nn.Softmax(dim=1)
)
def forward(self, x: Tensors) -> Tensors:
x = self.first(x)
for conv in self.convs:
x = conv(x)
x = self.max_pool(x)
x = self.drop_out(x)
x = self.flatten(x)
for dense in self.denses:
x = dense(x)
x = self.last(x)
return x
class UNet(nn.Module):
"""
Implementation of the U-Net network.
This model is used to predict mask associated to input image.
Inspired from:
- https://github.com/francois-rozet/adopptrs/
"""
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
depth = 4
self.downs = nn.ModuleList(
[DoubleConv(in_channels, 64)] + [
DoubleConv(64 * (2 ** i), 128 * (2 ** i))
for i in range(depth)
]
)
self.maxpool = nn.MaxPool2d(2, ceil_mode=True)
self.upsample = nn.Upsample(
scale_factor=2,
mode='bilinear',
align_corners=False
)
self.ups = nn.ModuleList([
DoubleConv((64 + 128) * (2 ** i), 64 * (2 ** i))
for i in reversed(range(depth))
])
self.last = nn.Sequential(
nn.Conv2d(64, out_channels, 1),
nn.LogSoftmax(dim=1)
)
def forward(self, x: Tensors) -> Tensors:
features, shapes = [], []
# Downhill
for down in self.downs[:-1]:
x = down(x)
features.append(x)
shapes.append(x.shape[-2:])
x = self.maxpool(x)
x = self.downs[-1](x)
# Uphill
for up in self.ups:
x = self.upsample(x)
x = torch.cat([
x[:, :, :shapes[-1][0], :shapes.pop()[1]],
features.pop()
], dim=1)
x = up(x)
x = self.last(x)
return x
class MiDaS(nn.Module):
"""
Implementation of the MiDaS network.
This model is used to predict relative inverse depth of images.
Input images must be in 384 x 224.
Taken from:
- https://pytorch.org/hub/intelisl_midas_v2/
"""
def __init__(self, _in_channels: int, _out_channels: int):
super().__init__()
# Normalization
self.register_buffer(
'mean',
torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1)
)
self.register_buffer(
'std',
torch.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1)
)
# Load MiDaS model
self.midas = torch.hub.load('intel-isl/MiDaS', 'MiDaS')
def forward(self, x: Tensors) -> Tensors:
x = (x - self.mean) / self.std
x = self.midas(x)
return x