-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameters.py
186 lines (176 loc) · 7.31 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import argparse
import logging
import math
import os
import random
import torch
import datasets
from datasets import load_metric
import transformers
from accelerate import Accelerator
from transformers import (
AdamW,
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
SchedulerType,
get_scheduler,
set_seed,
)
from transformers.utils.versions import require_version
from torch.nn import MSELoss
from torch.utils.data import (
DataLoader,
TensorDataset
)
import time
from data_processing import *
from datetime import datetime,timedelta
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
}
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--task_name",
type=str,
default=None,
help="The name of the glue task to train on.",
choices=list(task_to_keys.keys()),
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_lengh` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--teacher",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=str,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument('--data_dir', type=str, default="")
parser.add_argument("--eval_step", default=200, type=int, help="eval step.")
parser.add_argument("--print_step", default=10, type=int, help="print step.")
parser.add_argument('--temperature', type=float, default=1.)
parser.add_argument('--kd', action='store_true')
parser.add_argument('--aug_train', action='store_true')
parser.add_argument('--prune',action='store_true')
parser.add_argument('--prune_type',type=int, default=0)
parser.add_argument('--sample_count',type=int, default=400)
parser.add_argument('--sample_ratio',type=float, default=1e-5)
parser.add_argument('--sample_layer',type=str, default="attention.output.dense.weight")
parser.add_argument('--fix_sparsity', action='store_true')
parser.add_argument('--restore_sparsity', action='store_true')
parser.add_argument('--pruning_sparsity',type=float, default=0.875, help='sparsity')
parser.add_argument("--current_step", default=0, type=int, help="current step.")
parser.add_argument("--start_epoch", default=0, type=int, help="current epoch.")
parser.add_argument('--pruning_frequency',type=int, default=800, help='also known as bank_size')
parser.add_argument('--pruning_epochs',type=int, default=0, help='pruning epochs')
parser.add_argument('--local_rank',type=int, default=0, help='rank')
parser.add_argument('--do_eval',action='store_true')
parser.add_argument('--early_stop',action='store_true')
parser.add_argument('--early_stop_metric',default='accuracy', type=str, help="early stop metric")
parser.add_argument('--save_last',action='store_true')
parser.add_argument('--one_shot_prune',action='store_true')
parser.add_argument('--sample_mask_count_1',type=int, default=2)
parser.add_argument('--sample_mask_count_2',type=int, default=4)
parser.add_argument('--adv_norm_type',type=str, default="l2")
parser.add_argument('--adv_init_mag',type=float, default=0.05)
parser.add_argument('--adv_steps',type=int, default=5)
parser.add_argument('--adv_lr',type=float, default=0.03)
parser.add_argument('--adv_max_norm', default=0, type=float,
help='adv_max_norm = 0 means unlimited')
parser.add_argument('--max_grad_norm', default=1, type=float, help='max gradient norm')
args = parser.parse_args()
# Sanity checks
if args.task_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a task name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
args.lr_scheduler_type = SchedulerType[args.lr_scheduler_type.upper()]
return args