-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquery.py
548 lines (411 loc) · 13.4 KB
/
query.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
from datetime import datetime
import pyspark
import pandas as pd
import glob
from pyspark.sql import SparkSession
from pathlib import Path
from sqlalchemy import create_engine
# directory of weather data
data_lake = "../datalake/weather"
# sqlite engine for temporary query results
sql_engine = create_engine('sqlite:///../sqlite/querydb.db', echo=False)
def spark_session_init():
'''
Initialize spark session
'''
conf = pyspark.SparkConf().setAppName('Weather_Analysis').setMaster('local')
sc = pyspark.SparkContext(conf=conf)
spark = SparkSession(sc)
return spark
def create_directory(dir):
'''
Generic function to create a directory if it does not exist
'''
output_dir = Path(dir)
output_dir.mkdir(parents=True, exist_ok=True)
def load_data_models(city_name, province_name, data_lake, sql_engine):
'''
Create a dataset that combines the weather data for all the stations and years based on input city and province
- Pandas to read and concat partitioned CSV files
- Clean the data and load into sqlite for analysis
- TODO add comments
'''
city_name = city_name.lower()
province_name = province_name.lower()
# directory of weather fact data and dimension tables
# input_fact = data_lake + "/2021/31688.csv"
fact_weather = data_lake + "/fact/*/*.csv"
dim_stations = data_lake + "/dim/{}_stations.csv".format(city_name)
dim_geonames = data_lake + "/dim/geonames.csv"
# list of all the files from fact_weather
list_files = sorted(glob.glob(fact_weather))
print('\tProcessing {} Files...'.format(len(list_files)))
# Using Pandas to read the weather CSV files, since we will be exporting as Excel
df_weather = pd.concat([pd.read_csv(f) for f in list_files])
# Remove records with missing temperature data
df_weather = df_weather.dropna(subset=['MaxTemp'])
df_weather.to_sql('weather', sql_engine, if_exists='replace', index=False)
# Load stations dimension table and insert into sqlite
df_stations = pd.read_csv(dim_stations)
df_stations.to_sql('stations', sql_engine, if_exists='replace', index=False)
# Load stations dimension table and insert into sqlite
df_geonames = pd.read_csv(dim_geonames)
df_geonames.to_sql('geonames', sql_engine, if_exists='replace', index=False)
return df_weather, df_stations, df_geonames
def run_sql(sql_query, table_name, sql_engine):
'''
Function to query the sqlite database and return the results
'''
# query the database
df = pd.read_sql_query(sql_query, sql_engine)
df.to_sql(table_name, sql_engine, if_exists='replace', index=False)
return df
def staging_queries(sql_engine):
'''
Function to stage the dimension and fact tables and create a single denormalized table for analysis
'''
print('\nStaging Started...\n')
# Clean the geonames dataset and filter for cities
name = 'cities'
query = (
'''
SELECT
REPLACE(REPLACE(ROUND(latitude, 1) || ROUND(longitude, 1), '-', 'X'), '.', 'Z') AS 'IRID',
"name" AS CityName,
"category" AS Category,
"status.code" AS StatusCode,
"concise.code" AS NameType,
"province.code" AS ProvinceCode,
"latitude" AS Latitude,
"longitude" AS Longitude,
"decision" AS StatusCodeDate
FROM
geonames
WHERE
"concise.code" != "PROV"
;
'''
)
df = run_sql(query, name, sql_engine)
print('\tDimension table Cities staged.')
# Join the stations dimension table with the geonames table to get the city information
name = 'stations'
query = (
'''
SELECT
stations.Province,
cities.CityName,
cities.IRID,
cities.Latitude,
cities.Longitude,
stations.Elevation,
stations.StationName,
stations.StationID,
stations.ClimateID
FROM
stations JOIN cities USING (IRID)
;
'''
)
df = run_sql(query, name, sql_engine)
print('\tDimension table Stations staged.')
# Clean and stage the weather fact table
name = 'weather'
query = (
'''
SELECT
weather.StationID,
weather.ClimateID,
weather.Year,
weather.Month,
weather.Day,
weather.DateTime,
weather.MaxTemp,
weather.MinTemp,
weather.MeanTemp,
weather.TotalPrecipmm AS TotalPrecip,
weather.SnowonGrndcm AS TotalSnow
FROM
weather
WHERE
MaxTemp IS NOT NULL AND
MinTemp IS NOT NULL AND
MeanTemp IS NOT NULL
;
'''
)
df = run_sql(query, name, sql_engine)
print('\tFact table Weather staged.')
# Join the new stations dimension table with the weather fact table
name = 'weather'
query = (
'''
SELECT
stations.Province,
stations.CityName,
stations.IRID,
stations.Latitude,
stations.Longitude,
stations.Elevation,
stations.StationName,
stations.StationID,
stations.ClimateID,
weather.Year,
weather.Month,
weather.Day,
weather.DateTime,
weather.MaxTemp,
weather.MinTemp,
weather.MeanTemp,
weather.TotalPrecip,
weather.TotalSnow
FROM
weather JOIN stations USING (ClimateID)
;
'''
)
df = run_sql(query, name, sql_engine)
print('\tFact and dimension tables joined.')
print('\nStaging Finished.\n')
return df
def analysis_queries(input_year, sql_engine):
'''
QUERY 1:
Inquiry: Based on input year, number of days where temperature delta was within 1 degree of last year's mean
Method: Use SQL Lag function to calculate the difference between the current year's mean temperature and the last year's mean temperature
Result: Print the result to the console
'''
name = 'yoy_delta'
query = (
'''
SELECT
CityName,
Year,
Month,
Day,
DateTime,
MeanTemp,
LAG(AVG(MeanTemp), 1, 0) OVER (
ORDER BY (Month || Day) ASC
) AS MeanTempLag,
ABS(LAG(AVG(MeanTemp), 1, 0) OVER (
ORDER BY (Month || Day) ASC
) - MeanTemp) AS MeanTempLagDelta
FROM
weather
GROUP BY
CityName,
Year,
Month,
Day
;
'''
)
run_sql(query, name, sql_engine)
query = (
'''
SELECT
COUNT(DISTINCT DateTime) AS Count
FROM
yoy_delta
WHERE
MeanTempLagDelta < 1 AND
Year = {}
;
'''.format(input_year)
)
df_yoy_delta_1 = run_sql(query, name, sql_engine)
analysis = "day(s) in {} where mean temperature was the same as the year before.".format(input_year)
x = df_yoy_delta_1.iloc[0][0]
print('\nQUERY RESULTS:\n\t {} {} \n'.format(x, analysis))
'''
QUERY 2:
Inquiry: Based on input year, number of days where temperature delta equal to last year's mean
Method: Use SQL Lag function to calculate the difference between the current year's mean temperature and the last year's mean temperature
Result: Print the result to the console
'''
name = 'yoy_delta'
query = (
'''
SELECT
CityName,
Year,
Month,
Day,
DateTime,
MeanTemp,
LAG(AVG(MeanTemp), 1, 0) OVER (
ORDER BY (Month || Day) ASC
) AS MeanTempLag,
ABS(LAG(AVG(MeanTemp), 1, 0) OVER (
ORDER BY (Month || Day) ASC
) - MeanTemp) AS MeanTempLagDelta
FROM
weather
GROUP BY
CityName,
Year,
Month,
Day
;
'''
)
run_sql(query, name, sql_engine)
query = (
'''
SELECT
COUNT(DISTINCT DateTime) AS Count
FROM
yoy_delta
WHERE
MeanTempLagDelta = 0 AND
Year = {}
;
'''.format(input_year)
)
df_yoy_delta_0 = run_sql(query, name, sql_engine)
analysis = "day(s) in {} where mean temperature was the same as the year before.".format(input_year)
x = df_yoy_delta_0.iloc[0][0]
print('\nQUERY RESULTS:\n\t {} {} \n'.format(x, analysis))
'''
QUERY 3:
Inquiry: Based on input year, what was the year's mean temperature
Method: Use SQL avg function to calculate the mean temperature
Result: Print the result to the console
'''
name = 'year_mean'
query = (
'''
SELECT
ROUND(AVG(MeanTemp), 1) AS MeanTemp
FROM
weather
WHERE
Year = {}
GROUP BY
Year
;
'''.format(input_year)
)
df = run_sql(query, name, sql_engine)
analysis = "was the average temperature in year {}.".format(input_year)
x = df.iloc[0][0]
print('\nQUERY RESULTS:\n\t {} {} \n'.format(x, analysis))
'''
QUERY 4:
Inquiry: Based on input year, what was the year's highest temperature
Method: Use SQL max function to calculate the highest temperature
Result: Print the result to the console
'''
name = 'year_max'
query = (
'''
SELECT
MAX(MaxTemp) AS MaxTemp
FROM
weather
WHERE
Year = {}
GROUP BY
Year
;
'''.format(input_year)
)
df = run_sql(query, name, sql_engine)
analysis = "was the highest temperature in year {}.".format(input_year)
x = df.iloc[0][0]
print('\nQUERY RESULTS:\n\t {} {} \n'.format(x, analysis))
'''
QUERY 4:
Inquiry: Based on input year, what was the year's lowest temperature
Method: Use SQL min function to calculate the lowest temperature
Result: Print the result to the console
'''
name = 'year_min'
query = (
'''
SELECT
MIN(MinTemp) AS MinTemp
FROM
weather
WHERE
Year = {}
GROUP BY
Year
;
'''.format(input_year)
)
df = run_sql(query, name, sql_engine)
analysis = "was the highest temperature in year {}.".format(input_year)
x = df.iloc[0][0]
print('\nQUERY RESULTS:\n\t {} {} \n'.format(x, analysis))
'''
QUERY 5:
Inquiry: Based on input year, what was each month's average temperature
Method: Use SQL min function to calculate the lowest temperature
Result: Print the result to the console
'''
name = 'monthly_mean'
query = (
'''
SELECT
ROUND(AVG(MeanTemp), 1) AS MeanTemp,
Month
FROM
weather
WHERE
Year = {}
GROUP BY
Year,
Month
;
'''.format(input_year)
)
df = run_sql(query, name, sql_engine)
print('\nQUERY RESULTS:\n\t {} {} \n'.format(x, analysis))
list_months = df['Month'].tolist()
for month in list_months:
dfx = df.query('Month == {}'.format(month))
x = dfx.iloc[0][0]
print('\nQUERY RESULTS:\n\t {} {} \n'.format(x, analysis))
analysis = "was the average temperature in year {} month {}.".format(input_year, month)
return df_yoy_delta_0, df_yoy_delta_1
def query_process_details(start, end, input_year, city_name, province_name):
'''
Function to print the ETL process details
'''
print('\n\nETL Pipeline Started at {}'.format(start))
print('\tProcessing Data for Year:', input_year)
print('\tCity:', city_name)
print('\tProvince:', province_name)
print('\nETL Pipeline Finished at {}\n'.format(end))
duration = end - start
print('ETL Pipeline Duration: {}\n'.format(duration))
def main():
'''
Main function to run the ETL pipeline for the weather dataset for the selected city and province
'''
start = datetime.now()
print('\n\nETL Pipeline Started at {}\n\n'.format(start))
# directory of data lake
data_lake = "../datalake/weather"
# sqlite engine for temporary query results
create_directory('{}/sqlite'.format(data_lake))
sql_engine = create_engine('sqlite:///{}/sqlite/tempdb.db'.format(data_lake), echo=False)
input_year = "2021"
input_city = "Toronto"
input_province = "Ontario"
# Set user input values
input_year = input('Enter a year (e.g. 2021): ')
input_year = int(input_year)
input_city = input('Enter a city (e.g. Toronto): ')
input_province = input('Enter the province (e.g. Ontario): ')
# Run the function to query the weather dataset and export Excel and return dataframes
load_data_models(input_city, input_province, data_lake, sql_engine)
staging_queries(sql_engine)
analysis_queries(input_year, sql_engine)
end = datetime.now()
query_process_details(start, end, input_year, input_city, input_province)
print("\n\n\n\nDONE")
if __name__ == "__main__":
main()