-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathquickpaint.py
executable file
·244 lines (189 loc) · 9.26 KB
/
quickpaint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python
# coding: utf-8
import transform
import numpy as np
from argparse import ArgumentParser, RawTextHelpFormatter
from collections import defaultdict
from scipy.misc import imread, imsave
import time
import os
import glob
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = "3" # filter out info & warning logs
# read input arguments
def get_opts():
parser = ArgumentParser(description="Paint (transfer style to) image using a pre-trained neural network model.",
formatter_class=RawTextHelpFormatter,
usage="./quickpaint.py -i [ input (content) ] -o [ output (stylized content) ] -m [ model "
"(style) ] -ma [ mask ] -bl [ blend ]"
"Example: ./quickpaint.py -i inputs/stanford.jpg -o outputs/stanford_cubist.jpg -m "
"cubist -ma 1 -bl 0.5 ")
parser.add_argument('-m', '--model', type=str,
dest='model_path', help='model name to load',
metavar='MODEL', required=True)
parser.add_argument('-i', '--input', type=str,
dest='in_path', help='dir or file to transform (content)',
metavar='IN_PATH', required=True)
parser.add_argument('-o', '--output', type=str,
dest='out_path', help='destination (dir or file) of transformed input (stylized content)',
metavar='OUT_PATH', required=True)
parser.add_argument('-d', '--device', type=str,
dest='device', help='device to perform compute on (default: %(default)s)',
metavar='', default='/gpu:0')
parser.add_argument('-b', '--batch-size', type=int,
dest='batch_size', help='batch size for feed-forwarding (default: %(default)s)',
metavar='', default=1)
parser.add_argument('-ma', '--mask', type=int,
dest='mask',
help='create binary mask from input (@ 1 percent of max) & mask output, (default: %(default)s)',
metavar='', default=0)
parser.add_argument('-bl', '--blend', type=float,
dest='blend',
help='multiply the original image with the output using a weighting factor,'
'(default: %(default)s)', metavar='', default=0)
opts = parser.parse_args()
# check inputs
assert os.path.exists(opts.in_path), 'Input dir: %s does not exist!' % opts.in_path
if "." not in opts.out_path:
if not os.path.exists(opts.out_path):
print('creating output dir')
os.makedirs(opts.out_path)
# if opts.model_path!="all":
# assert os.path.exists(opts.model_path), 'Model not found.. %s does not exist!' % opts.model_path
assert isinstance(opts.batch_size, int), '-b, --batch_size needs to be a positive integer'
assert opts.batch_size > 0, '-b, --batch_size needs to be a positive integer'
assert isinstance(opts.device, str)
assert (opts.mask == 1 or opts.mask == 0), '-ma, --mask needs to be binary'
assert opts.blend <= 1, '-bl, --blend needs to be a float equal or less to 1'
return opts
# read image using scipy
def read_img(src):
img = imread(src, mode='RGB')
if not (len(img.shape) == 3 and img.shape[2] == 3):
img = np.dstack((img, img, img))
return img
def transfer(sess, data_in, paths_out, model_path, device, batch_size,
mask, blend):
"""
Transfers image style to another image using feed-forwarding and a pre-trained model
:param sess: TF session
:param data_in: List of input content images (having same shape)
:param paths_out: List of output paths
:param model_path: Path for input pre-trained model
for .model models will read model meta graph from pre-trained_models/model.meta
:param device: GPU to use for computation
:param batch_size: Number of images batched (def: 4) or # of images if smaller
:param mask: Mask input
:param blend: Blend input and output
:return: Stylized image(s)
"""
# read in img
img = read_img(data_in[0])
# get img_shape
img_shape = img.shape
batch_shape = (batch_size,) + img_shape
img_placeholder = tf.placeholder(tf.float32, shape=batch_shape, name='img_placeholder')
# get predictions from model
preds = transform.net(img_placeholder)
saver = tf.train.Saver()
# restore model
saver.restore(sess, model_path)
num_iters = int(len(paths_out) / batch_size)
# iterate over batches (maybe run in parallel w joblib if needed)
for i in range(num_iters):
pos = i * batch_size
curr_batch_out = paths_out[pos:pos + batch_size]
curr_batch_in = data_in[pos:pos + batch_size]
x = np.zeros(batch_shape, dtype=np.float32)
# iterate over images in batch
for j, path_in in enumerate(curr_batch_in):
x[j] = read_img(path_in)
_preds = sess.run(preds, feed_dict={img_placeholder: x})
# save output images
for j, path_out in enumerate(curr_batch_out):
img = np.clip(_preds[j], 0, 255).astype(np.uint8) # after clipping to 255
if mask == 1:
thr = x[i].max() * 0.01
inmask = np.where(x[j] > thr, 1, 0)
if inmask.shape != img.shape:
img = img[0:inmask.shape[0], 0:inmask.shape[1], :]
img = np.multiply(inmask, img)
if blend > 0:
inimg = x[i] * blend
if inimg.shape != img.shape:
img = img[0:inimg.shape[0], 0:inimg.shape[1], :]
img = np.multiply(inimg, img)
imsave(path_out, img)
remaining_in = data_in[num_iters * batch_size:]
remaining_out = paths_out[num_iters * batch_size:]
# re-run on remaining images in list not in previous batch
if len(remaining_in) > 0:
eval(remaining_in, remaining_out, model_path,
device=device, batch_size=batch_size, mask=mask, blend=blend)
def eval(data_in, paths_out, model_path, device, batch_size,
mask, blend):
# define batch_size
batch_size = min(len(paths_out), batch_size)
soft_config = tf.ConfigProto(allow_soft_placement=True)
soft_config.gpu_options.allow_growth = True
try:
# start TF graph
g = tf.Graph()
# TF session
with g.as_default(), g.device(device), tf.Session(config=soft_config) as sess:
transfer(sess, data_in, paths_out, model_path, device, batch_size,
mask, blend)
except tf.errors.ResourceExhaustedError:
print('Not enough memory on GPU will run on CPU instead!')
# start cpu TF graph
gc = tf.Graph()
# TF session
with gc.as_default(), gc.device("/cpu:0"), tf.Session(config=soft_config) as sessc:
transfer(sessc, data_in, paths_out, model_path, device, batch_size,
mask, blend)
def eval_mul_dims(in_path, out_path, model_path, device, batch_size, mask, blend):
"""
Runs "eval" on diff image shapes after grouping them by shape
"""
in_path_of_shape = defaultdict(list)
out_path_of_shape = defaultdict(list)
# if images have diff shapes, get all shapes
for i in range(len(in_path)):
in_image = in_path[i]
out_image = out_path[i]
shape = "%dx%dx%d" % imread(in_image, mode='RGB').shape
# group images by shape in dict
in_path_of_shape[shape].append(in_image)
out_path_of_shape[shape].append(out_image)
for shape in in_path_of_shape:
# run function on every unique image shape
eval(in_path_of_shape[shape], out_path_of_shape[shape],
model_path, device, batch_size, mask, blend)
def main():
opts = get_opts()
start_time = time.time()
if opts.model_path == "all":
modelnames = glob.glob('styles/*.jpg')
models = [str(os.path.join('pre-trained_models', os.path.split(i)[1].split('.')[0] ) + '.ckpt') for i in modelnames ]
else:
models = [str(os.path.join('pre-trained_models', opts.model_path) + '.ckpt')]
for m, model in enumerate(models):
# check if input is file or dir
if not os.path.isdir(opts.in_path):
full_in = [opts.in_path]
in_name = os.path.splitext(os.path.basename(opts.in_path))
out_name = str(in_name[0] + '_' + os.path.splitext(os.path.basename(model))[0] + in_name[1])
full_out = [os.path.join(opts.out_path, out_name) if os.path.isdir(opts.out_path) else opts.out_path]
else:
# get all file names if dir
files = []
for (dir_path, dir_names, file_names) in os.walk(opts.in_path):
files.extend(file_names)
full_in = [os.path.join(opts.in_path, x) for x in files]
full_out = [os.path.join(opts.out_path, x) if os.path.isdir(opts.out_path) else opts.out_path for x in
files]
eval_mul_dims(full_in, full_out, model, device=opts.device, batch_size=opts.batch_size,
mask=opts.mask, blend=opts.blend)
print("\n Painting done in %0.3f seconds ... Have a good day!\n" % (time.time() - start_time))
if __name__ == '__main__':
main()