This repository was archived by the owner on Jul 29, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode.nb
7048 lines (6915 loc) · 341 KB
/
code.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 348746, 7040]
NotebookOptionsPosition[ 338052, 6833]
NotebookOutlinePosition[ 339399, 6877]
CellTagsIndexPosition[ 339356, 6874]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["\:975e\:7ebf\:6027\:65b9\:7a0b\:6c42\:89e3", "Section",
CellChangeTimes->{{3.7519438849231043`*^9,
3.751943888498309*^9}},ExpressionUUID->"c24be15a-8e8a-45c2-a2c5-\
817d42a72eed"],
Cell[CellGroupData[{
Cell["\:4e8c\:5206\:6cd5", "Subsection",
CellChangeTimes->{
3.75194390670235*^9},ExpressionUUID->"7183d7da-210e-4146-9bf5-0751c649236e"],
Cell[BoxData[
RowBox[{
RowBox[{"dichotomy", "[",
RowBox[{"f_", ",", "interval_", ",", "eps_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"FixedPoint", "[", "\[IndentingNewLine]", " ",
RowBox[{
RowBox[{
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"a", "=",
RowBox[{"Min", "[", "#", "]"}]}], ",",
RowBox[{"b", "=",
RowBox[{"Max", "[", "#", "]"}]}], ",",
RowBox[{"c", "=",
RowBox[{"Mean", "[", "#", "]"}]}]}], "}"}], ",",
"\[IndentingNewLine]", " ",
RowBox[{"Which", "[", "\[IndentingNewLine]", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"f", "[", "a", "]"}],
RowBox[{"f", "[", "c", "]"}]}], "<", "0"}], ",",
RowBox[{"{",
RowBox[{"a", ",", "c"}], "}"}], ",", "\[IndentingNewLine]",
" ",
RowBox[{
RowBox[{
RowBox[{"f", "[", "c", "]"}],
RowBox[{"f", "[", "b", "]"}]}], "<", "0"}], ",",
RowBox[{"{",
RowBox[{"c", ",", "b"}], "}"}], ",", "\[IndentingNewLine]",
" ",
RowBox[{"(*",
RowBox[{
"\:65e2\:4e0d\:5728\:5de6\:534a\:533a\:95f4", "\:ff0c",
"\:4e5f\:4e0d\:5728\:53f3\:534a\:533a\:95f4", "\:ff0c",
"\:76f4\:63a5\:629b\:51fa\:4e2d\:70b9"}], "*)"}],
"\[IndentingNewLine]", " ", "True", ",",
RowBox[{"Throw", "[",
RowBox[{"{", "c", "}"}], "]"}]}], "\[IndentingNewLine]", " ",
"]"}]}], "\[IndentingNewLine]", " ", "]"}], "&"}], ",", "interval",
",", "\[IndentingNewLine]", " ",
RowBox[{"SameTest", "\[Rule]",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Abs", "[",
RowBox[{
RowBox[{
"#", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "-",
RowBox[{
"#", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}],
"]"}], "<", "eps"}], "&"}], ")"}]}]}], "\[IndentingNewLine]", " ",
"]"}], "//", "Catch"}], "//", "Mean"}]}]], "Code",
InitializationCell->True,
ShowCellLabel->False,
CellChangeTimes->{{3.7519439692309265`*^9, 3.7519440873346815`*^9}, {
3.7519441315212092`*^9, 3.751944343350325*^9}, {3.751944419078656*^9,
3.751944423247895*^9}, {3.751945604159439*^9, 3.751945624057577*^9}, {
3.7519460814677396`*^9, 3.751946082557802*^9}, {3.7519462275430946`*^9,
3.7519462295912123`*^9}, 3.7519462946589336`*^9, {3.751946364287916*^9,
3.7519463686881676`*^9}, {3.7519623854882765`*^9,
3.7519624181851463`*^9}, {3.753530186963914*^9, 3.7535302665224648`*^9}, {
3.7535303494642086`*^9, 3.7535303792239103`*^9}, {3.7537745806846323`*^9,
3.753774584834239*^9}, {3.7537919818639717`*^9, 3.753792002510153*^9},
3.7539377445563183`*^9},
CellLabel->"In[22]:=",ExpressionUUID->"a231fb60-847e-465a-a715-4189d3a81c47"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"dichotomy", "[",
RowBox[{
RowBox[{"x", "\[Function]",
RowBox[{
RowBox[{"Sin", "[", "x", "]"}], "-",
FractionBox[
SuperscriptBox["x", "2"], "2"]}]}], ",",
RowBox[{"{",
RowBox[{"1.", ",", "2."}], "}"}], ",", "0.5*^-5"}], "]"}]], "Input",
CellChangeTimes->{{3.75194435217583*^9, 3.7519443880338807`*^9},
3.751946192946116*^9, 3.7519463806128497`*^9},
CellLabel->"In[23]:=",ExpressionUUID->"d5f3a0cd-8097-4246-b120-fa1abc95b0d8"],
Cell[BoxData["1.404414176940918`"], "Output",
CellChangeTimes->{
3.7519443942312355`*^9, 3.7519444270611134`*^9, {3.751945612159897*^9,
3.7519456308819675`*^9}, 3.7519461389530277`*^9, 3.751946193982175*^9,
3.751946237436661*^9, 3.7519462987211657`*^9, {3.751946372327376*^9,
3.751946381346892*^9}, 3.7519624289407616`*^9, 3.752017269332467*^9,
3.7529898029446507`*^9, 3.7530085214672885`*^9, 3.753155976940259*^9,
3.7531718163321095`*^9, 3.7531762614057474`*^9, 3.753223254110896*^9,
3.7537733255376434`*^9, 3.753784212710602*^9, 3.753787459752322*^9,
3.75378754976147*^9, 3.7538292167977657`*^9, 3.7538624891813345`*^9,
3.7541303443972464`*^9, 3.7541307893786983`*^9, 3.754131131621273*^9,
3.7541752083345976`*^9, 3.754183635039193*^9, 3.754358824767833*^9,
3.7543732806366615`*^9, 3.7543878754276953`*^9, 3.7543879195565777`*^9,
3.754388059744237*^9, 3.7543897479915514`*^9, 3.7543912246370106`*^9,
3.754607652790007*^9, 3.7546082622748675`*^9, 3.755603141902026*^9,
3.755603579152035*^9, 3.7556061856781197`*^9, 3.755606509538644*^9,
3.7556469975694265`*^9},
CellLabel->"Out[23]=",ExpressionUUID->"85bb9bc0-5a63-40b6-b126-1cca31dcddb2"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["\:725b\:987f\:6cd5/\:6539\:8fdb\:7684\:725b\:987f\:6cd5", "Subsection",
CellChangeTimes->{
3.7519445224275675`*^9, {3.7543875926631403`*^9,
3.7543875933183413`*^9}},ExpressionUUID->"6b1b0bf7-6087-427d-9d3a-\
26be210e80c2"],
Cell[BoxData[
RowBox[{
RowBox[{"newton", "[",
RowBox[{"f_", ",", "x0_", ",",
RowBox[{"r_:", "1"}], ",",
RowBox[{"maxIter_:", "1000"}]}], "]"}], ":=",
RowBox[{"With", "[", "\[IndentingNewLine]", " ",
RowBox[{
"(*", "\:7b26\:53f7\:8ba1\:7b97\:5e76\:5316\:7b80\:725b\:987f\:6cd5\:8fed\
\:4ee3\:51fd\:6570", "*)"}], "\[IndentingNewLine]", " ",
RowBox[{
RowBox[{"{",
RowBox[{"\[CurlyPhi]", "=",
RowBox[{"x", "\[Function]",
RowBox[{"Evaluate", "@",
RowBox[{"FullSimplify", "[",
RowBox[{"x", "-",
RowBox[{"r",
FractionBox[
RowBox[{"f", "[", "x", "]"}],
RowBox[{
RowBox[{"f", "'"}], "[", "x", "]"}]]}]}], "]"}]}]}]}], "}"}],
",", "\[IndentingNewLine]", " ",
RowBox[{"FixedPoint", "[",
RowBox[{"\[CurlyPhi]", ",", "x0", ",", "maxIter", ",",
RowBox[{"SameTest", "\[Rule]", "Equal"}]}], "]"}]}],
"\[IndentingNewLine]", " ", "]"}]}]], "Code",
InitializationCell->True,
ShowCellLabel->False,
CellChangeTimes->{{3.7519465209948792`*^9, 3.751946523096999*^9}, {
3.7519474875391626`*^9, 3.7519475599543047`*^9}, {3.7519638648468904`*^9,
3.751963891902438*^9}, {3.7519677531622896`*^9, 3.751967771575343*^9}, {
3.751968481070924*^9, 3.7519685564222336`*^9}, {3.7519685914462366`*^9,
3.7519686168986926`*^9}, {3.7520172826542287`*^9, 3.752017290423673*^9}, {
3.753530419551217*^9, 3.7535304622006564`*^9}, {3.7537920175390124`*^9,
3.7537920217142515`*^9}, 3.754387554287073*^9, 3.7543876027563577`*^9},
CellLabel->"In[24]:=",ExpressionUUID->"7f8834f2-206f-410d-b7f0-841ea0673063"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"newton", "[",
RowBox[{
RowBox[{"x", "\[Function]",
RowBox[{
RowBox[{"x", " ",
SuperscriptBox["\[ExponentialE]", "x"]}], "-", "1"}]}], ",", "0.5"}],
"]"}]], "Input",
CellChangeTimes->{{3.751947597539454*^9, 3.7519476243839893`*^9}},
CellLabel->"In[25]:=",ExpressionUUID->"f2e1dd06-bb8d-41eb-8ecc-95546c09058c"],
Cell[BoxData["0.567143290409784`"], "Output",
CellChangeTimes->{3.751947625526055*^9, 3.7519638992828608`*^9,
3.751963939944186*^9, 3.751968001412489*^9, 3.7520173049045014`*^9,
3.7529898127942133`*^9, 3.75300852184431*^9, 3.753155977315281*^9,
3.7531718168026104`*^9, 3.753176261639748*^9, 3.7532232542200966`*^9,
3.7537733260368443`*^9, 3.7537843744678535`*^9, 3.7537874599333324`*^9,
3.753787549921479*^9, 3.753829217054781*^9, 3.7538624895663567`*^9,
3.7541303448252707`*^9, 3.754130789655714*^9, 3.754131131897289*^9,
3.7541752086546125`*^9, 3.754183635276207*^9, 3.7543588250358486`*^9,
3.7543732808426733`*^9, 3.754387875568096*^9, 3.7543879199963784`*^9,
3.7543880601654377`*^9, 3.7543897482525663`*^9, 3.7543912248250213`*^9,
3.754607653211031*^9, 3.7546082624688787`*^9, 3.755603142600066*^9,
3.755603579391049*^9, 3.755606185890132*^9, 3.7556065097616568`*^9,
3.7556469979514484`*^9},
CellLabel->"Out[25]=",ExpressionUUID->"4f98fda4-e91b-470f-8b89-1e2227df0a91"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"newton", "[",
RowBox[{
RowBox[{"x", "\[Function]",
RowBox[{
SuperscriptBox["x", "3"], "-", "x", "-", "1"}]}], ",", "1."}],
"]"}]], "Input",
CellChangeTimes->{{3.7519476558387885`*^9, 3.751947677298016*^9}},
CellLabel->"In[26]:=",ExpressionUUID->"dfaa420c-7db9-40f7-8f7b-107b956b4c62"],
Cell[BoxData["1.3247179572447458`"], "Output",
CellChangeTimes->{3.751947679547145*^9, 3.751963936970016*^9,
3.7519680036616173`*^9, 3.7520173070566244`*^9, 3.7529898150193405`*^9,
3.7530085219413157`*^9, 3.753155977367284*^9, 3.7531718170054107`*^9,
3.753176261686548*^9, 3.7532232542668967`*^9, 3.7537733262084446`*^9,
3.7537843770390005`*^9, 3.7537874599903355`*^9, 3.7537875499764824`*^9,
3.7538292171027837`*^9, 3.7538624896183596`*^9, 3.754130344879274*^9,
3.7541307897107167`*^9, 3.754131131952292*^9, 3.754175208695613*^9,
3.7541836353222094`*^9, 3.7543588250698504`*^9, 3.7543732808786755`*^9,
3.754387875599296*^9, 3.7543879200431786`*^9, 3.754388060196638*^9,
3.7543897483085694`*^9, 3.754391224855023*^9, 3.7546076532530336`*^9,
3.7546082625018806`*^9, 3.7556031426500688`*^9, 3.7556035794480524`*^9,
3.7556061859741373`*^9, 3.755606509836661*^9, 3.755646998021453*^9},
CellLabel->"Out[26]=",ExpressionUUID->"71ae6927-2887-43f3-8478-e5047c2acdd0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"newton", "[",
RowBox[{
RowBox[{"x", "\[Function]",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}], "2"],
RowBox[{"(",
RowBox[{
RowBox[{"2", "x"}], "-", "1"}], ")"}]}]}], ",", "0.45"}],
"]"}]], "Input",
CellChangeTimes->{{3.7519476847224407`*^9, 3.7519477198964524`*^9}, {
3.7519639268754387`*^9, 3.7519639306286535`*^9}},
CellLabel->"In[27]:=",ExpressionUUID->"f0fc556f-7e28-4404-8209-69f772fb996c"],
Cell[BoxData["0.5`"], "Output",
CellChangeTimes->{
3.751947723818677*^9, {3.7519639242142863`*^9, 3.7519639314396996`*^9},
3.751968005663732*^9, 3.7520173099937925`*^9, 3.7529898174714813`*^9,
3.753008522037321*^9, 3.7531559774492884`*^9, 3.753171817130211*^9,
3.7531762617645483`*^9, 3.753223254313697*^9, 3.7537733262864447`*^9,
3.7537843793421326`*^9, 3.753787460053339*^9, 3.7537875500414863`*^9,
3.7538292171507864`*^9, 3.7538624896843634`*^9, 3.7541303449372773`*^9,
3.7541307897617197`*^9, 3.754131132006295*^9, 3.7541752087606144`*^9,
3.7541836353702126`*^9, 3.754358825129854*^9, 3.7543732809306784`*^9,
3.754387875630496*^9, 3.754387920105579*^9, 3.754388060227838*^9,
3.7543897483685727`*^9, 3.7543912249000254`*^9, 3.7546076533070364`*^9,
3.7546082625518837`*^9, 3.7556031427070723`*^9, 3.7556035795080557`*^9,
3.755606186063142*^9, 3.7556065099126654`*^9, 3.7556469980984573`*^9},
CellLabel->"Out[27]=",ExpressionUUID->"3679675b-3426-43b8-8578-8e8459579502"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"newton", "[",
RowBox[{
RowBox[{"x", "\[Function]",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}], "2"],
RowBox[{"(",
RowBox[{
RowBox[{"2", "x"}], "-", "1"}], ")"}]}]}], ",", "0.65"}],
"]"}]], "Input",
CellChangeTimes->{{3.751947730157039*^9, 3.75194774712401*^9}},
CellLabel->"In[28]:=",ExpressionUUID->"480df26b-a559-4a2f-8460-f08a8f6a6851"],
Cell[BoxData["0.5`"], "Output",
CellChangeTimes->{{3.7519477306760693`*^9, 3.7519477475850363`*^9},
3.751963934879896*^9, 3.751968007749851*^9, 3.7520173124949355`*^9,
3.7529898203796473`*^9, 3.7530085221653285`*^9, 3.7531559774732895`*^9,
3.7531718171770105`*^9, 3.7531762618943486`*^9, 3.753223254313697*^9,
3.753773326317645*^9, 3.753784381458254*^9, 3.753787460084341*^9,
3.753787550063487*^9, 3.7538292171747875`*^9, 3.753862489707364*^9,
3.754130344971279*^9, 3.7541307897927217`*^9, 3.754131132035297*^9,
3.754175208776615*^9, 3.7541836353862133`*^9, 3.754358825145855*^9,
3.75437328095068*^9, 3.754387875646096*^9, 3.7543879201211786`*^9,
3.754388060243438*^9, 3.754389748390574*^9, 3.754391224916026*^9,
3.7546076533330383`*^9, 3.7546082625708847`*^9, 3.7556031427260733`*^9,
3.7556035795320573`*^9, 3.7556061860821433`*^9, 3.7556065099296665`*^9,
3.7556469981244583`*^9},
CellLabel->"Out[28]=",ExpressionUUID->"171531df-f113-4e0d-943d-381f0d87bf72"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"newton", "[",
RowBox[{
RowBox[{"x", "\[Function]",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}], "2"],
RowBox[{"(",
RowBox[{
RowBox[{"2", "x"}], "-", "1"}], ")"}]}]}], ",", "0.55", ",", "2", ",",
"1*^6"}], "]"}]], "Input",
CellChangeTimes->{{3.7519639767002883`*^9, 3.75196397742533*^9}, {
3.751964016833584*^9, 3.751964017566626*^9}, {3.751964102328474*^9,
3.7519641188894215`*^9}, {3.751964667255786*^9, 3.751964673201126*^9}, {
3.7519657186509223`*^9, 3.751965746654524*^9}, {3.7519673437278714`*^9,
3.751967351202299*^9}, {3.751967431869913*^9, 3.751967440793423*^9}, {
3.751967483801883*^9, 3.7519674928263993`*^9}, {3.7519675234091487`*^9,
3.751967530742568*^9}, {3.7519679634453173`*^9, 3.7519679706997323`*^9}, {
3.7520174145667734`*^9, 3.7520174180859747`*^9}, 3.753171784830048*^9,
3.7543875613850856`*^9, {3.7543878992853403`*^9, 3.754387901785345*^9}},
CellLabel->"In[29]:=",ExpressionUUID->"f17f4003-d43c-4d54-95a7-babb61dafee3"],
Cell[BoxData["0.5001766496559674`"], "Output",
CellChangeTimes->{{3.7519640126103425`*^9, 3.751964023835984*^9}, {
3.7519640946420345`*^9, 3.751964103976568*^9}, 3.7519641490931487`*^9, {
3.7519646693989086`*^9, 3.7519646908301344`*^9}, {3.751965727094405*^9,
3.7519657439403687`*^9}, 3.7519669679893804`*^9, 3.751967236286726*^9, {
3.7519673410707197`*^9, 3.7519673517473297`*^9}, {3.7519674329249735`*^9,
3.751967441770479*^9}, {3.751967484673933*^9, 3.7519674936474466`*^9},
3.751967524023184*^9, 3.751967709950818*^9, {3.7519679572919655`*^9,
3.7519679720978117`*^9}, 3.7520174312807293`*^9, 3.7529898391717224`*^9,
3.7530085235644083`*^9, 3.7531559787663636`*^9, 3.753171832510442*^9,
3.753176277307478*^9, 3.75322325970431*^9, 3.7537733426664734`*^9,
3.7537845541231294`*^9, 3.753787469466878*^9, 3.7537875599500527`*^9,
3.7538292236771593`*^9, 3.7538625020890727`*^9, 3.754130354699836*^9,
3.754130800112312*^9, 3.7541311419758654`*^9, 3.754175215814931*^9,
3.754183644784751*^9, 3.7543588342973785`*^9, 3.754373290177207*^9,
3.7543878756938963`*^9, 3.7543879246053867`*^9, 3.7543880647422457`*^9,
3.7543897551589613`*^9, 3.75439123127639*^9, 3.7546076600884247`*^9,
3.7546082692862687`*^9, 3.75560314984248*^9, 3.755603586612462*^9,
3.755606193575572*^9, 3.755606516445039*^9, 3.7556470057638955`*^9},
CellLabel->"Out[29]=",ExpressionUUID->"0308cf87-8998-4c6e-97ea-64519487f3a2"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"newtonMonitored", "[",
RowBox[{"f_", ",", "x0_", ",",
RowBox[{"r_:", "1"}], ",",
RowBox[{"maxIter_:", "1000"}], ",",
RowBox[{"monitor_:", "None"}]}], "]"}], ":=",
RowBox[{"With", "[", "\[IndentingNewLine]", " ",
RowBox[{
RowBox[{"{",
RowBox[{"\[CurlyPhi]", "=",
RowBox[{"x", "\[Function]",
RowBox[{"Evaluate", "@",
RowBox[{"FullSimplify", "[",
RowBox[{"x", "-",
RowBox[{"r",
FractionBox[
RowBox[{"f", "[", "x", "]"}],
RowBox[{
RowBox[{"f", "'"}], "[", "x", "]"}]]}]}], "]"}]}]}]}], "}"}],
",", "\[IndentingNewLine]", " ",
RowBox[{"FixedPoint", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"monitor", "[", "#", "]"}], ";",
RowBox[{"\[CurlyPhi]", "[", "#", "]"}]}], ")"}], "&"}], ",", "x0",
",", "maxIter", ",",
RowBox[{"SameTest", "\[Rule]", "Equal"}]}], "]"}]}],
"\[IndentingNewLine]", " ", "]"}]}]], "Code",
InitializationCell->True,
ShowCellLabel->False,
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQBWIQfWFZ0E+fL68dt90U+Aui5RNEBH2BtHPOXREQXaM4
QwpEGxVdBNPsAt1WIFrhkKA1iFaZEZgCou+W3MgG0b8erKoB0ZeiTWpB9Mvr
4l0gWk4kaAKI5r9cPgdEr7n2CEz7zN65DERr7Z68HETfeXp8A4jue7t3I4h2
6Cip9APSBcGTwHTMFAN7fyDd5rUVTBtt+OMFonO3vvUB0X4ChUkg2uSoVjKI
PqKgUgOiH6ZfqAfzny7+A6KvhSr8A9EKnPd6vb6/dvzo9A9Mh21l8TwFpBW6
msB0iIAq19sfrx1ZFMy5QbSE9gFJEO2UxS4Homdt9NQE0XM2xoJpAO5Sug4=
"],
CellLabel->"In[30]:=",ExpressionUUID->"0ba1e263-5927-4668-a476-acfa03010569"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"newton", "[",
RowBox[{
RowBox[{"x", "\[Function]",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}], "2"],
RowBox[{"(",
RowBox[{
RowBox[{"2", "x"}], "-", "1"}], ")"}]}]}], ",", "x0", ",", "1"}],
"]"}], ",",
RowBox[{"newton", "[",
RowBox[{
RowBox[{"x", "\[Function]",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}], "2"],
RowBox[{"(",
RowBox[{
RowBox[{"2", "x"}], "-", "1"}], ")"}]}]}], ",", "x0", ",", "2"}],
"]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x0", ",", "0.4", ",", "1"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<\:521d\:503c\>\"", ",", "\"\<\:7ec8\:503c\>\""}], "}"}]}],
",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<r=1\>\"", ",", "\"\<r=2\>\""}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}]}], "]"}]], "Input",
CellChangeTimes->{{3.7519672749419374`*^9, 3.7519672782231245`*^9}, {
3.751972489574197*^9, 3.7519725094133315`*^9}, {3.7520173605256824`*^9,
3.752017375529541*^9}, {3.7520174442654724`*^9, 3.752017488519004*^9}, {
3.7529028476060896`*^9, 3.7529028500022264`*^9}, {3.753008478741845*^9,
3.753008480653954*^9}, {3.7532232116406*^9, 3.7532232201092167`*^9}, {
3.7543876301812057`*^9, 3.7543876365772166`*^9}, {3.754387682222896*^9,
3.754387683798499*^9}},
CellLabel->"In[31]:=",ExpressionUUID->"c6ea459b-a340-4be0-928e-c057bd762d6a"],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{}]],
LineBox[CompressedData["
1:eJxF0QtMk1cUAODK1AEaKwwwNmSmCP9AyyQgREU9wGRStxgprICCBF0nCzDF
55ymE8aI8UXjqIpIraLEVFYUUFEGOJnNBKdJfUC1Qov8fdH2dxs+8AEb5vTe
m9zcfDn3nnPvucJ1GyUyLx6Pl/n/HF8bt3TUVVUZgPd+mOCutiw64DW10y5u
P7T6EXGz5ZWhfe5j4nTmGePPUed2zD6i0BqJX/Xt8lkhf0L8bWKwlknoI86f
Y5Yu9e8n1hcOCEtM1FNGAiu2rDIRD49+yf+jhVrMhIczAjNx2g9Cfc1O6jN+
kaPRZuq8LuMNQ+IAsUyn8lFpqGdxcvMOv6fEyQs/kKwvpm7UVS0rNFDv33b/
bvmiQeLzG4RP2mupg15K62U91HvKD+yaOoUlVkhXiUNnU59iAmYsjqfWTHvx
bvly6sYXPYNpadRNMc15D9Kpmzcp+qRSFiLe+xlc+rVwTW8GCyHoy46U3qws
FpagW76eoM/OZmEe+lrf1e7cXBZi0O36OR0yGQuR6Bu66saCAhbmo8v3ivia
kyxEob9Y0VZgu8dCKFoXrK5smGgBBp3AlbZtj7XAp+jA3mFtiswC8WjH9W/U
AqUFwtHrus2SN39aIBb9+EH2JONbC8nv+3dEWXKkldRfMPWlV0OOFRI8cfFf
SZ8ctkIY2vhzbelJnRWEaB+D9/6Q1/R8nOi7X85G2kA7Nj44mKkIy7+YY4Nm
9Nt/jYvbDtrgKLp0Z42+53cbXEf7jOXk//PcBlfRnys3dSkZO1zw7J/7k2hh
hh00nvy9oRnWcjvUoS+U6UqUl+1wGu2QFBdJHHZQo8OEwVn8jx2gQqsUgtjo
OAdUo4N4M/2+WumAE+gP+wNvHZdTR5mErZ9ZqW966ZNHU4ZIPr5EnXfn3BCp
l1mtiLppHCL3UQ/uGWud7oRaT/2lncfjE51wDl1zbFJca7GTvC8hIPWwuM5J
+jlQccLd88gJDeh+4Y6Piqe5SH+NTakLfJNc0IKukMojRJtd8Bs6aUQjWHna
Rfp9rM10W/7QBfvQXEnQjw2+blB6/kuqepcf7ybv9RYxu0MK3aTfG2cs6bRU
u+Ei+qFXuu/5bjdcQZv4W/3lY27Yix4KrhSkxnBwCl2/aDJXv56DJnRR5ved
3pUcVHn+89LmtRO7ODiCHvYvGhlfPfH/ACKEsE8=
"]]}, Annotation[#, "Charting`Private`Tag$8600#1"]& ],
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2}]],
LineBox[CompressedData["
1:eJxF2nc8V9//AHAtGaWMiCiyMirJar6kEElGSTQUitAkFUklacnKSCRFSkYk
Ukr4GCGSZL7XvW9kk4iU7+v0+P3KP+/H032/7z3jdV7n3HuP3IGjVs5TeXh4
rKbx8JDPrJNvk2NimiBjM3v2SCITrsfJ+MTdbYKB4TINYqcyn2337zWBcE2n
NbH4Ar0fKUlN0PSy+Q7xmaJMk7xnTTB/w3W1UbS+cGJPQ0UT3N9+wfYHuiY9
QFNsvAmk9WbT4+iURg7v/F9NoCguPecn2n/qhpYFPM2gc81zNbGmza9L8rzN
YOM5PYw48pfXZ02RZqhyyNw0gd5rdui0pWozPPpRkPcL3fPV5E2wXTPsd1zG
4nnABGZSnt+nPc2wKlhZagq6br8yzN/fDOU8IduJ85qmF94/1AyQnfWe+HLF
23fPPZuh8L7966nohY+1/2sOboZDK5e8mI4Wdn54eVFYM8wtCRslni4nauR0
uxmm1J1bNQPdFT1Q2hvbDN8Umt8Q5wallvM8boYT6dU1vGgLF7kqpeJm+NXw
WpAfvVEh5IZbaTPc2//fDmId1m+zzIpm0Jd1TCCWtm2tXlXbDLrfHXUF0F+N
o2rM2prBYOFDd0H0ReXZn06MNoOfoPf32ejn7T+a3qi1gMXZNTdE0VnF6spV
y1rgoX8Gl/hZgoNn04oWAKkGEEOn25ULDeu2wI6fG0aIUz5EbVTZ1AKF+0rd
xNF3X+ikhe9ugfQeeR9J9J3ww+MJ+1pA4HkcizjmWLxx+oEWMA3qNJJCR6ry
cspdWqC6bmzeAnRI/Gfx354t4Nho/EYaHRDo6e9yswVspoSukiXld0yp9gpp
gWBJlTTiC/qtUpfCW+D+1Vw5ObTf+MacuJgW0GS+m70YffqIaFddUgtcsPgy
KI92t8myXvemBWYX+fQoo7crDSiJ9LcAs/HiOw3Sv8NPZecOtUBqcYbNCtKe
xa5SQt9b4OQL9V5i7j5qtsDPFqgfUly4En0qpmF4ysxWWHfzUog2OmpWQdHg
wlYQW3AtfzV6ovnM6365VvikeO/gGrTDY50XvQqtUPjbWGwteolR5uOvqq1Q
vNXFcx25/vkHIWydVvhd5rFZH908dHXvR/NWOMJetMkIvf6dkW2NZStIFjYJ
GqMTb02zqt7eCvN0zn0mPqx+zrDCrhWu2cYcMUH/dD6m/u5gK+iPNOSZkfo0
2Yxn+rXCGh6DbGv0vrfykSHprTDtapGnI5qxaNCn5lkr2Dybec8Jvdv/zX6h
nFZQ6XxR5Yy23bBr6Y1XrVC/PEjTBW1VHFxypbwVVvN4qXigjcrGhvw4raCd
ZvXRG12iXNZYwG2FAw+G9M6Q+A2KeDPR2QrPnPsfnkXrmyy/dra/FYQGja6d
Q6+qdJI7NdEK1Kj3jUto9ZqabR7ibfAqwNc/BP1keZz2U8k2kGhfoBuGVgk5
vKBbug2WGTh/C0crWc7ocJFvg73Gu85FoRd9Wu3npIHfd7/bFI8W+ZL01N60
DRL3LK1KJ/GmezLsztY2cB3b2JWJnhOtf7rJog2k87/MyUbP2tWycefONviS
Ou1ELnpGy9wWK6c2ePL4VGQh+gfDh9/Urw2MlAUv1ZP4dBDytbzQBhlr7vxq
IL/nJPTZBrQBnT/s30TKw/3v06FrbTBwNCuRQdqre0785cg28GoX2/kVXeue
OPdmTBv0ahVI96Dt+rQuRdxtg0jN6J4+tMfgLpcHiW0gdSc9dRgdMfpA8116
G7jZSKfxPMT8c0YnqfxZG8y7LPx+GjplvFyi9nkbVIh1D/GiX/3qnWDkt0Gt
7nrX2WjONL2yidI2mK+wr18KrTG3yl6PifU/+z1eD50fuvcDcNogaEjyzlr0
JtFBfWNuGwSa5SXpo3eKiyvZdLfB0Mea/s1oP2mHgZOj2P63vu2yQ/PFDx3w
GW+DwzEO1F502KLLny/+aoNFI87+juikxU/yQ6cx4OGKyRF3dNWS4YCMOQzw
C71K+aNtngSOvhBhQFRokXggmqUmefjNPAacP+a9/zr627L126oXMEDk8E2I
REtpB0l2KzPgEqt9WRradYN0upI+A8bMf3uw0LN2vJ11dCMDfISWTnSgM10O
uOUaMeD64fnZ/egft1KWbN7KgNX3C+9NooMYWg9c7RhQ5d4XKZeE8Tj0ZUrW
HgZscbO9qYquneHjMO7AgPpfTS9WoucvfSdz/RADpqroPzZCp/hsjX7qyYDv
Lx6uOoo2uzUwMuzNgHczzo2cQQ8khu9Y54PnvwDDAWi9900iHy4w4Nn8N/mx
6PL5B2/2BzMgRaTnWRXaXZ2/RzeMAUKKrOwm9Fz9p6b+txmQ/O48fwfa9tDQ
TOG7DKA387+amsyEzhy/i5qPsX1EBW6uR9+okGOffcqAs4EHL5ijNdpKoDiD
AZy6ndRe9Onpgr+sXzBAwSV/0h/NZx3l7VXMgCDebpFK9NODqxsKShlQaW7a
zUBbnG3T4n3PgODIoh3f0NH35YciaxkQs8J7VOYR5reBDPe8NgbEiqdL+aCr
pllX8rAZsNZxfFkE+pjEiIoJzYDL9T/409F569d2NHVh+11o1KLRu62Yhov7
GGATqRLJk8IEnoMXHx4eZMBKWUm2DHrzzfL9P0cZYCD90d4e3ZPgVrjxJwOk
VDsSfNAhz4UW3fjNgK9rjMfvohtbtrdKz2DC/rc/pCi0iyrbZr0IEy6V64f5
PWbCieWzD3jPw34avaGagvbRWuWROZ8Jh6L41n9CB68PvbR4EeZJzTKZZU+w
vhsLgu0XMyE8Q23uXnTi5q8xEYp4vkn597fQOVYbMnnVcV54FN/7A/1mp8cr
WI7zgsp/gRqp2L+7Y0pPa2IeuPLN6DC69eBga5ceExwzGlNp9FSf+/w1hjju
xLd6/XiK8etfLcZnwoSioVtPNqXheury2KINZjiujqaKR6BVblnqZFsxgXfi
h+G6dFwPRZzb0LMD+5l13DUKvTbmsZniLiZ8zM0M+I62eDDFMWofxsk4b+Cb
DMw3KUuP1B5gwoJVXe0qmViOtF1n+A/iOq4vUfsO+lTus1s+7lh/Xem3157h
+ut1253nRzEuPj+JFMxiwrV3/Mm9J5hQrbc6MgwdV7n/9b4zmLdTOOefZzMh
ufZmWbQvli8na4XFcxx/n1/WfTzPhGmyN2O/oUuYwl83BmK5knvcrV8w4QO9
btj3KhOsnyXWzs1lwpevrpM5N5ggob+F+wXd9e3dvCXhTChWKne7/JIJwz96
ZfdHYh4P2yLukc+E378k1e/EYDt93EA5vML1GN8Jg1kJuM7zVXt6tADzxez4
rYZknlJNW3jjDRMURN7b+mEc+xxh3st9i+NRevHRAWz3rceWTYUiJhjImZ8l
7bIz9kLQ3WImbFE6e/kA1svyqoDzrP9wfalRF1uP5ahLsT+jVI7xpf07eTZe
J/xa3fa6Coyv1apZRoUYp33RZeGVuH7cdLE8rxT7OWnBFrsajC+T9E+D+L0a
z2fRDh8xvsybGarVTGD7d/f4fcJ2ttX8fhc/jZ7kMaY34nXcOXIXWEwQfDzX
XYvDhI6wTy8vUkw4+sSsroLGOMsrsQxoZ8Lg0s/Pj3fg/Djj0YUrPehVoz++
4adPnBv75g9c562YIx+BnyHFu8/c+smEz581P4TgZ/LXrcKhv7G9ZlRLk89O
qWhZ06ks+Pp7pbMJfoocOmuxlY8FalNCJNTwU3r8hPQHfha86MzXi8RP5Ztu
neaCLNh3P1BgXIAFa7N3+1sIsWDvvd2BKbNZYGS0w+zjHBZ4HTnROIj/t2za
Ot9KmAVnpu1WXzGXBQcn12dai7FgMlh7T4gIC46F6frWz2NBk5pHQYYoC3wU
NTbvkGBB2+vMxSX4vZAtciwbKRZEn2v/WSnOgjsMyadfFrDAu4U/7i1+L+m4
yGlbGRYsGv8enTKfBflR0+baybLgtnJhqD3+rkR1oqVZjgX1b4UXKuHvagqG
H9nLs+BjhoFsB5qmuLBHiQWXdBuprXievlMMQYYyC+4/fWA3jB7j//JlrwrW
u/BtRthCFghplB91UGcB/5oVznmLWDC/uHANeylef6TorD5eV97m5cwDy1kw
4jT25R1az/fJPUdNFjxsGH71DMthMOeBG72SBetc+2jZxSzYmhir66zNgjjz
yJhr6APlN2oO6rFAUfhtmTmW093+cmzHKiwn51fFY7R337lDLmtYIDjq4cqj
wIIbYkcnXdezoO62yJH76MhHhyq7gAU5rjkGPej7qx2i3DawwG1zdPhKRexH
B8vlHptYMEfkrGseuvCbyc9eQxZ8l4kwHkFXBhqUHTFmwXbdA9tXYLuwnq7c
d8yUBREwGXoP3Q3qaoNbsNx+Dvyf0CN1CqPHt7LgypLPa6djuwmOzbt10gLb
5UP7Ngf04s/iH8WsWKDtOmM4GL36mYToC2sW+L5uPPkKfdhVMuqHDfZXx0o/
oSUsuGgo1RRjy4JGs37QRsfILViwxo4F6YLTzOzQ5U3S987tYcHS/cx799Cs
HBn2wn0s0JjwESlE/whdKF/owIL3/xkrMtHKprKPpjqxwONL8ElJ7MfAfPmM
K4dZ0L9i6Ql/dHykwuASdxaM6iqlR6FzTiiufO+B7Tz/5ZR0NK2qnDvrOAsG
JtSkG9ETvEvG0k6wIEH11Wg3WoxasmabJ8ZxsY3YJHpjrOrbUG8WvM2ZoiWv
ygI7b7UpK8+wgHv3krEW+oS1+sb6syxQ2cpbsAmdKLisTNwPzz+5scsRzeO7
oiY2ANtvoON3LHq+rabwukAcL0oZDSno5VorrRlX8PoHZPVz0Ht7tL7IXmeB
bbxTcxX6VLm2ZNENFiR/bhBtRAc/1LF3DGaBpq7eAAddsFuPmRTKgtOfyxJG
0fV6q+SMw1kQWz3Fd4oaC3rEVjt2RrDgaagxnyBaunpNh2o0C3a+N9SXQZ9d
B/0Z8ThOnx70XY8Ok9RfYZnAgh37zy43Qj/+rn9y6D6eb9eHlK3oxjSDUa0k
FqyY8XjEHq270GjyZSoLGsZ0tU+hzceNNtinsWDXDXFLX/TBBuNLE+ksyGhl
b7iIjgw2mQlZOK4j1FJuood/m80pyWNBp2xqWiI61C0zyiQf449vYtMj9LJG
UdmaV5g3fAvepqJdnzVrNL9hQWk7v+NzNMPRxWqghAUdpZbeJWjf2spmr1IW
8DL69MvRkuuWO/4sY8H4pNJwJXq7+MhJ3koWzFz1S/ITuqL80m3pjyzwt5Xw
ZJHyanfIJNaxQIYRHEuhpyeaJivXs8BYCJ61o9f7COdqfsH63Fr7uAf9fOm9
xs1tWI/jRxpH0fFh+Qu8vmKeyvxxUxDzytpJmYfjXTheKyoqZ6Ob3C6o+/ew
YBOD9/cctJjh5nXX+1lQJtGrL4a+Ovp57/3vLPgpM3OzNFrJaVWH0ihe73S7
xkJ0Se3do09/sGDhlC1zZdG/Hzv65/7EcqVez5ZHe+4evF89hQ0OiztCVdHC
FdtVraex4bTrDy11dLp2XlbjdDYcjdauXYr+KnS+mJrJhovHu/s10HvfzeKO
zWbD9a7pTTpoE6UlS5Sk2BAnru25AX1HsJb34QI2VF3jf2SA7hrw5srJsKHe
Lq5+I/raq7JEGVk2nCw7IWuEfm9xSGaeEhsWdbw6Z4qW0pkzEabMBnac99Ut
6MMLcpvnqrDBMbkwxAwt2M4bPUudDY/adoSZo818kkWma7LhzI0eRyv0XQfz
wQsr2aCbeMrcGt1jOFIzqcWG1EQd7e3oG3ONbv7UZUOa/YPRHejqJO7Mb+vY
kLBIwWoX2rxW4RfbhA1fHkq470PH51S17NvChnbPQTkyD/Td8cxvM2PDHZ/J
euJg5xLvpm1sONLSrXkAXTPuOFS7gw03OvfVOKEtFB90vN3PBrHM1AhXdILA
ltJ1jmxgzdsifxg90D/08JUTG6YX12QQh+YbHMg9xIZAl7QiN3TdNk5rugcb
wqPSaz3Q1mfl6uLOsOFdW2vEcXRmykeltT5seP1k3ZwTaKEvF3yafdmwQ//l
FeLylRwFCX82rFq6+ORJ9PreRO+QQDZcnhWr5YWOXWBdtSyIDYePZicQ/zCZ
Jld9lQ1yYwqCp9DZyY7v+W+y4VLy8hbiJQ4KMpfC2fDJNsHlNPpycP1xudts
iBmFcmLO64DSt5FszNceSmfQcZLcoxMxbMh3vsogFvmUVOSVwAZFOLjeBz1h
qOzikoblcbd5dw69y/PLa94MNizcu3+WH/pF4hXhpEw2rH1iZkN8fLIjn53N
BoWQz+3E7Xkps+3z2VAYrfDzPHpjh+2BsVdsEJrxaJ0/ae95/LlRBdj/qqrn
ie1PuDrUF2L779kwSVyrppq9tYwNkTfEhy+gl9o1z+wpZ4PGqanLL5J4Dbq2
+9p7NnT/J+BKbMjtmlFWzQa9FeeaifPjU23169mgNG999iX0Q+GlvzXZbDhX
9Gj9ZfSVWojJ4bChITnZlfjwLSstPZoNwRdnRBBrzD59eF0HtseDrnbi13zF
Dca9bJi14vLlQPS9ss/H3/exISn/RSrxxcDOWVsH2NB3wOYj8ebpQhutvrHh
VWC71BX0p0nbjN1j2F/PvR4Rv3jjZsocZ8OaaZsqiKPP+XH3T7DhduyNLuK9
Px8sODTJBh7tMLUgMl5H+q4cn8GB2u0Rj4in9gU4BApzIKYtKOgqmvs06ief
KAd+a0UkEpe7PYm8LsaB8elLXxMHf62pCpHgwLNJgT5iKa7UqlgZDiTmhJld
Q/96sLReZhEHmswVHIlZB/SPJshyYG2a6RniZJZzUpI8BxK+2T4k1mzNFM5U
4UCOQOh34nmxxU811TgwYcPgu07idVeDcY46B2aZly4gfvPl57n85RxwKnPR
Jzb9ZNRVos0ByyC+y8RLw3ZdNtblwJbBNbeJ51q6y77X48B/t4SSiBs+hNrU
rOHAbLPwYuL971uLmjZwYGu20gSxVd3oJ9+NHHCp9xa4gTZoFuEuMsTyz7Cf
T7y4a/PMg5s5MCDRpEksMuQ4n9+UA68feQLx1HE/ladbOKD34MEWYg5/zpYh
cw6I0q8PENcJ1+6+bcEBbswjD+IiyW4PPSsObI9VOk2cqCIX4reDA/cEONeJ
w1asvS+3kwNTHi+8TXxx1c6sElsO+H7rjyM+YHKzXmA3BxjhFunEVpYp3LQ9
HLj2hZnzp/y7ikcs9nHA7sG0AmLN/YyZww54/sZXxX/q4zo2P+oAB5Qt+N7/
qc9xMdXVThzwa+qs+VOfM8vXtDlzQGLNns/EQ/6mZv6HOHBH07n5T/2CnPfI
u3JA2JOH+ad+If5HSg9zoPvxMupP/aJjz7u6c0DKq7+dOCvhRcisI9he7gZd
f+qb8vF+xlEOcGSUe//UN7Mny+o4B2IF4/r/1DdvZsn3ExzYk/5gkPhE4eLP
0Z7Yv56rvxE7lq9rX3OKA8WFDsPEmxpP8l08wwGPjbu+Eyt0PlYt9+UAz4kr
f46LDZSscfPjQP/jY39+P/0H00zInwM6H+g/5x+eHN/z7AIH+Ac5f65PzxQ/
uv0SB5QkDv8pX/2cFf6jARx4o3fmT/lLJMxC7wRy4LP+nA7i54sOJa4L4sDJ
WWp/6v9Q+WI26yoH9N0qGcQRy+NKLl3n4Pze30QcoJv3Wekmxt+XiHpiT/jU
XhHMgberX30gdjLuG3UPwXhsdSgn3r6Nn39uGAfi9QPe/anvTgWp7HAOvGqR
zyfW2gdqNrc5sEF4fdaf+h+yWzsWifVd+fHxn/of9dp6N5oD2QEtCX/q7x2y
F+5woFzTPupPfQNL/S/HcaBjRvbFP/UNZocuuYf5QfWK95/6Rk4kVibg9Z+U
u/2pX7Lmf8IPOTDZcs3qT/3StzY8T8J46OA1/FO/Fy4dOx9hPE226xA7l8bz
xz/hwPCcij/jic/497FVT/F6kiL8xE/K9jTWp3Hge0D+DzIeB8qlHwk+48A3
o4UNxOEmvkKPsjiQ9O7Tn/Gr877Fy+A5/p5qzST2rbyz6UwuB4zWtAURLzIb
TxV7ifklp/okcVHVLtHMfMwfDtP3EvN9mM9pL8B86KOtQRxRG3l+ewkHfnzW
rST5SNdypL3/Pw54P+vOIG7+uMP8ehkHxkJLwollP4nJFL3H/NT90ZY49XNY
/vKPGA+D5V9IfjS3GZKrrOOAxW/RHOKBBsurB+s5UOpgG0qs0zjXNu4LBzaf
yTYiLmoO/i7A4IDb8OADkp+d7ft2JzM58Hjx5tPEfK1bSzawORDXvGcLsXnb
rPDTNPZ3aVIvyfdNzGsa7V043k4nyxH7OnRFXejhQFXTWBeZTxayTSal+zgw
9PBtFrETh++D9SDmw2TPdcQDdKDbu1EOLJ2r+md+C3dur9s9xoEVa1+OBZDy
thuu/jHOAYNnVtnEvh3T+Zf/5sDp+Qdlifm6LibfnU6BcZ42i8yfqYc5s/V4
KfDv2XCN2Lx7g9enmRQ4P69YQRzRw7NJQJACyYzvp8n8vKjfj+0tTEHTlqVc
Mt9v5tlwa1SEgtOaI+eJjwlPW+ctRsE0KUqCuGjllehTEhTEhJeuJ+uFrk0m
RiPzKXhkc7WarDdEbQSHvaQomLqfbxex0+lb27xkKNjCKnX2Rd+4avlreCEF
5u3l7WS9knNHNNVTloLVmrOciHkLong95Snw4a2yOotOmZJQcEKFgpsXBX55
o2tFDrgNqVKgojhuTzwmryB5Qp0CB+POHLKeMjVK8Ty+nIIz30d3kfXXyZ2H
Fw9qUCBkmvHAE33XRb32mCYFi5xCOsj6rfdaptoxbQr0frfuJus78bsnmvp1
KOhdW3aTrAfXp2ldOapHQahdY+4xdEhNHufIGgq4U41GjpD8LvYuxmMDBamz
jEXJ+tJO8ZJxrwEF1528p5P15yUdw+/umyjwFuLrcSHj27bCwt2Ygh3UhbsH
yfztev1392YKehafcnJGK/lsfepmSoFsN1OWrHe94z7OdNtKQfaiBs/96IT0
8Jwucwq0gpcKkvVy+dsdjoctKDi5+lb4XrQUp+mNqzUFFk+ivO3Rr5U4Xi67
KDibI36KrNdp3YfynXYUWM6wDyTr+9kmBz8e2o3tqRB5wQK9161L/dA+CiK6
lmiR+4NA36fN7Q4UXHvC7TRBZ9w8EnTwAAUh4fsuGaN5MocoZ2eMr6u6juT+
ZMm756HcgxQsq1mYBGjLulPg7ELB2FjNf2vJ/DM8fsfJjYI13bNjyf1O5YyC
zbQ7BQNm3aYryXwgfn7E8QgFS8TVapejDVdNs3I8TsHKdyrblqDPhld7TTtJ
gXbTuk5y/5XZGxXzwBPbr/AaLEK3Gx8o2HiKnL97mxRaOlGdTXlTsPn7S9F5
ZL6eGJkecIaCeVX5AeR+8IrNuyUKPhRMXJtzl5/MtwI2x5z8sH/1L8RP4P3l
EmfZiOn+FBxb3ub9Hb33bVfuwwsUlEbVfOpFR0jmtGy6RMHWuqJkLrm/PXl+
kg6g4G54CdWK/l1tIn85kIJ3tLUvuf/VWiJmrBhEATNOyaECndCaEux8HcfD
yi8FWegGnZNZM25SEJ4ZJJiMnhW6riEpmIL2q9ZbotEG3TPHDUNwPCU2772K
9jask2kPpaD2yCH5M+in9+5uCAynoNxV+fghNGfsoLPSbQpGTDZIbUfP377i
amkkBYOOeV/J8wfz9J9PD0ZTkD4inKiMDuArreW9Q8H2qqc/Z6PzD4QMJ8dS
kCyZmzioivnqtd184zjMD69StOrQihKKazviKbDRkF2XQZ7XHO/fdyWBAg/v
kRVB6JDKl5eUE7H+1hZHdqNLFQMelT2goEp3v7oaeuK8eeWhJLx+ts+5byo4
nprn9898hO0b1AXP0S5alEhKCgWrytnC7uR5U3CazuYnFEgYx+mT51GfOr3t
OlMpSPDwynq5BPPhRgO/oDQc7xcs35ui18fNSlySgeNj1NmgQhnn+9GG/8oz
KXhj8fCnBvqJ5f2vLlkUVJwufONLntelus3mf05BwYpT3UmKuD7m1VnxOIeC
XyG7RR8qYH5x4Nlhkovj54y1v7s8C/zz35/+mkfBpCw7bVAO7w/Ebt+9mk9B
SqFI9WJZvF8+sq9Q5TXm4znHr3XL4PqvQoWuKKBgg+iLAK0FLNgpPzzz8FvM
f5ffLOdKYH4890ZN4B0FcuJVMp2imG+/BG17UoTnM0py1ZyD6/MV1idNS/D7
H/PPV/OzYNkNmaiu/yioVsz1ZU7DfNvekX+tjAK+Ch7jnT+ZEKOfxVCtoODK
TtvcWf1M+HDHd2rlewrOTw2N8KeYMP27kZJbFQWnVidPU25iwuptwqaCHygo
nFleo1vLhGOPWzxSa7D+qVlLX5QzIXlacuiWj5jvA+ibl4qY0LLnWE53Hfb/
J0bv8QImzM1b3XS9noLIey6eFi+ZYCQy45daAwXDoTM1hnKY4OteI1v1hQKz
b5VvNLKZkFUas8m9iYJ9346m92Qy4ciz0vSBZgrSjh+UVM1ggsrdb/O9WvH8
dRc909OYuF6SvTTWRsGsu4zn7k+ZkHB8a+85JgW58UeP2KUywX732Z1T2RhP
Ea0mR58wQdz40btADgU3fF5FPHzMhLoV9WqCNAXjmk2dwylMuCk9JfIWlwLR
Mv928r5s88xlPGIdFNT7DP/6/AjbZ8jucHQnBc/nN25yQL9tvVIv3UXBttMd
238kM+Fs2fP197spOPKOveIuWieLnaLYSwF7DZ+2KXrwrpDokz4cT0V9Ezzk
feGVNeeWDVBguDPZ4W0SE1xOuHRkDVLwsvqSM3nfqbDntqXuN2y/iAGdbWim
cdGrV8MUTNf5vGgR+o5mv6L+CAVDrUaXv5H3wTLSISWjFFyK0uJUPiTvc0zG
N4/hemARq/gReX885OVUPU7BAuOxUvK+OKgt8YPlBM73gmtvu6A3ltfoNfyi
4DDfacoM/TtrItFukgI/y96jK8n77jiV2UweGp586uORRnsF2Xg7TqWhLKjA
kbw/1zh5id0xjYY8qzC3oQdM6NmTucV9Bg0jRh8GmOhHm9tyBnhpmFlnWvuB
7AdaqHttjJ+G1ZZ2CmR/QTOf0/A5QRrWm8o7JaJvfwvZO3U2DZ8PfQi/Tfb7
MArKA4Vo+HrM+t5Vsn+goktTcC4NxUZpnn7osmyJuFvCNPBWxk3zJPsN4jfN
FBOlYWHhmXWH0WMn41ukxWlQ/SblZ0v29+ytNLwvQUNBT7eHBfqYyY8MRUka
9nP9mjej1bQUpZ5I0aBVX5q/Ad2+0CpgmTQNHUkXeMl+lUT+831ZMjScDpZ/
oYXeM5xqq7uIhtSikqJl6PqKGUv1F2N73FzdTPbXhDzXjCqRp+FgflfTQvSW
e/ummCjSsFh7lSzZ71Pk+fKz5RIaYm2/HxEm+3X2tUODCg1KanuPkv1Iq0xF
n9ip0eCqY5ZM9jNlLvLwc1xGw0/vyidkf5W7wJ3OjuU00Dm+JyYTmaD8vdTK
fQUNSUpfncj+rvj3sspeWjTM89xfSPaX7crZGjqmTYPIVSHFYbRYwtmf53Rp
sAzMSh0k+9W86msCV9OgIJ8p0Yve/pg/U20tDW5+L6q70NJt60Nq19Ewxnz5
oBOdtumxhdQGGkpmNafQ6FOnGRpvDbA8bfX1HPT6p6LCTpto4FcKkGKT/Wui
fh/TjGmY6GT0tqGjjbOfWZnQIHpG80wr2sGnM3TUlIbrt65ItqCXZMicuGuG
/aFOVzehBzlWVhvMabj7e9/tRnS+eJBm+zYa5myTP/oFfdG0QOS6JQ07Zx60
a0CLZil/qt9OA9/msAP16Fbu7uwzNjRc26Hp9wn9UDIsfKEtDbYBBSl1aPet
ZSeLd9EQ75/O/ojWvjBh7WJPw76460uIfz9foTV7D7bfiXbfWnRp50GxrL00
HAuwZ9Sgg6XvDts4YLwIhJkR77T4WP9zPw1xL9aUfUDLBvDmJDjSUBohZk7c
mbvmtqEzDZ2/OKxqdGb3Ma+ugzRsvu19nvjMouQdt1zw+nZpKsQG1i3aWodp
SK52ZVahBa7MFW9yo0FaMS6BuC7fcOScBw0Pbht4EMf2nW1YfBTjJcPBkNhp
ceaLsmM0VDfyqxCr23Aj3U/QsPLj7vnEw1elvIU9aVh64LIocUHBtp0vvGhg
yxRIEQcOBujae9Owx9hsGbG5Yr4EzxnMBy3XzInFd/WPPjxLAxSzfYiZNxQa
TXxpkFlZ9YI4pXBXXt85GjwNmiaJjw0HR4efp+FeXtpOUj+9JSWn9S7QYK3I
+5Z4yu4x27aLNNjov9Qh7fX+1rJVFwMwHlLz3xKHFTtKKgfSUCS+0J60t91o
9FjlFax/u5QA6R95tQ9Nx67SsP3A3A/EPXun5c+7jte/dS2F9OfzML07+Tdo
OFxnHEv637fU4+y+YIxnT0gh8WE4nmg3PYQG982PP5L4EVrWuPpxKA0RN3ml
SHw17J+9wDwc84+zegCJv/jbBj+HIrB/ZC1ESbweqvBuiYrE/FA+r7IZrfHr
6au10TTM3nk/g8T7Dw1OLDuGhoC1qf8x0IVOEr6BsTQIfY0WIePlarTZbrU4
GqKN7tyl0FZVF9bWxtNQs6X6cDtaiidX2iuBhjAl18tf0ZyVPROSiTQs4Q59
70GnHpJre/OAhldz/MoG0EpisaK7k2i42CczRMZ/YqGY6VgyDV28YrfH0DIe
wf6RKTT8eGH47jcZn5J8uSuf0NDOSL9G9muKlV7orU2lQfOdGD/ZP3nrxE/5
I2k09E7tshVBCyzyshPMoMGx7ORdkt8CK/tCUjJp6BEw+kXy4ZTTLmWGWdhe
mjrpJF/6KnB+cbJxvMf295L9gT9q7bX8c2jw13EVIPv1Tp77fFgmF/u3O8p5
F7pPZdv9/DwatMe4Pu5kf19D+Zed+TQsS1zbe5HsR7xoIPT9FY4fidarcWR/
4fLXm8IKaHj+bdCpAN3aou2z/C3WP37WAIXeGZTxrKoQ4/d9iIIozmd1Wiqd
rkU0BO/rLd6KNmcnLpxZQsMMndaCKHTFTekdD/+jQXaKd+MI2f+1OvL6hjIa
2hqCP5zE+bmwfU4Ro5wGnfDkLdI4368Jv/rD5z3WT/VkLC+uH17AtOWSVVi+
h8JMW1xvaPb4Or+oxvzqYTy6E9cradEjsdY12L8pFRpBuN5ZYnisbqAW50+N
rs7RLMxXg1/5guswXzmvV+S+ZsKieEdQq6eh9pLWSF4Nrg9M27zKP9Owjbve
T38Ax+OozVPnLzSsUGovbhJkQeiDWs7UJox3ufx0dym8v7AwlUxopuGMw6wo
m8UsCJoo3raulYa9kpGTTrgenvZ4XWBzGw1f1t0xuY3rab8dua+9mTSYLD4i
1Yzr7/EpK76JsTG/djFUHuB63iv9iUoWh4Z35Q9ilPD+YcBOwWEbjfEo0X3E
H+0+Mz6yh4v5c5WnVCG6I1ui+moHft/cOqYPfcAhdJryVxq+xVQeEsb7McYs
wdUlXTg/b1OcSt6n7XoZcGx/Dw0Oxbuy9cn9tPPv5N+9NJy3MuG3RFuInG6L
7achd7BkPrkfrnwzKLpqkAZJ+/pkcv9t5OZm2jBEw8t5NwzI/X2RBNf/5DC2
x9r0HeR9y7qSvblzR3D9kpq4nDzfyDvW2Js2iv33oXUWeR+hJWOlsGUM5y+B
oQXkeU9GRaVd5zjOR8tVLpDnUaqnDEMvT6B7p+y6iU5e/LZs8W+M12Te/Fto
uRq9328naSjPXvgilDyP8MnS2jOFC3k7LtuHo+cvUXcbn8qFbfHnciLI86D6
pPtR07ngXfup6jZa6MKiRi1eLpSK66ZEoq8tjRGqm8kF3vMnzKLQM5pFDI/y
c+Hpj6DXxP6BN3xmCXKhfFPOGPGFYpcfN2dxIbNm2/Ro9EUeQ685QlxYX1HL
JMcvrZMbCpnDhf3lc4KIA87+OiIizAWmyPkRcr3LuU3d4SJcKFh8Vo44cDjH
ZZ4YF8TPrv1JyntlRRg3ch4X9u62PEbqE3TkyIH5Ely4el/dmdT3aqopM2Y+
F/ZcOZAVTMrfqbR7gRQXpNWuLCTPA68rTmu6uwCPb+u0Js/Hbhxg7lgowwVL
+dgP5PnTzXuv6u4t5MKcD+GvyPOe4NaobXKyXMhtfJxH3gfekvSsSpTjwpDt
kLkNeV5jY2GiIM+Fsr1O73TRoeHqpUkKXPjq+vnXNHRYLd9GZSUu3NC9fYq8
Dw+fzX2bosyF7TrCS95jPEeYvlurqsIFs33cPGuM/9tX4l6mqnJh1XrHeY3S
LIgsOaOzVB3bp/C1eV8zE6Km2GSnL+UCw1ZPIDsd8+d6TQ2N5VzQnKNxqQrz
QYyPUNozDS44HrOfRvZr3snrUlmpyYU7Pnt2JWM+iv1emvx8JRdEju7SWEX2
j2s+kNfR5kJnsmkVycdxR88n5OpwwXydmBlZP8U/tZdZpceF/1gfdlagE77q
3slfheWz9jpSgL6vJCaxdg0XtirFv3tB8r3jQHjBWi60eC+ayCbrn4SqubCe
CxULkpnP0UltKTcLgQumZqHn89HJUpcFDDZwgaUXGFyOfrRz/5ViAy40Zqzc
StaDKRHrphtu4gKf3YI9pljexx8lL5QacmGefwJF9os+ERr5ZWzMBY8TkowW
vJ9M3VJ3tmIz9p/nkTFx8rwiKH3U1JQLdY+K1MnztLT/rnlWbeHCRVc/gVh0
+tRDg1u3ckHDrm3hAzLeYOORGnMuHIy/bEbiL9N3UbeFBbaPQEzzI+yvZy9/
Hqqz5MI+AxcJ0j5ZI19oa2suRHZq63PR2Suf7/+8nQvxXzpWPyrD+f9YCMPG
hgs8f/4GICfN3b5xJxem/J9fdG1u3LWLC78nyV8/5Cor7mix+3c8z2lK3e7d
/36fz3hZuW/fv++/qVN96+z8z0WlsVlubv9+HxikPufJvX/Ht5gWuHV++ndc
v/9iwSnt9r/n7yo8mCB1+59bPu+e0TrR/vf3AoMqAYZLO/4e15s1OjVjT8ff
8wmYVBsoh/1z6+UHF++Vdvz9/anM9jtryv/9fk6LSvaXin820Mik5lT/+/6j
5teb/D/9O35ieQPvftY/8zfxXV88/s866kfCk5Z2/vXEt9a1BTf/mX9yj8vQ
93++qHZJfdXOr3/LK9mosLMj8J8zA0ov3H7x9W95uqyOe1h1/bOinPSuOQu7
/n5fnEdSeId519/jM5nzKu74df29ngZL7tXGjn/Hzw6e4ZGb3/3X/02tM/y9
ufvv+aIj/zMbcvjnw6ovrdtPd/9rP6uE/R9S/jmB9p98Nbfn7/fjomfovDre
8/c459bdvi/NPX+vx5TzFj0u1PvXrdmWegIGvX9/f8vGT0X9xL/jBmNPpMwT
e/+er/+C+PkMgb6/5lNX8l3s3vf390cl1hW3x/473jB1u0BqZd/f87HmeIr4
Tf5zt3SElOXK/r/2sD1dzBfxz5k5J/ZOf9//9/zDIh5j5P//f/7/AatlCb4=
"]]}, Annotation[#, "Charting`Private`Tag$8600#2"]& ]}}, {}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0.4, 0.4943056070459286}, FrameTicks -> {{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {
FormBox["\"\:521d\:503c\"", TraditionalForm],
FormBox["\"\:7ec8\:503c\"", TraditionalForm]},
AxesOrigin -> {0.4, 0.4943056070459286}, AxesStyle -> GrayLevel[0],
BaseStyle -> GrayLevel[0], DisplayFunction :> Identity,
Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> GrayLevel[0],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
FrameTicksStyle -> GrayLevel[0], GridLines -> {None, None},
GridLinesStyle -> Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]], LabelStyle -> {FontFamily -> "Helvetica",
GrayLevel[0]},
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0.4, 1}, {0.4943056070459286, 1.0000000000000142`}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}, TicksStyle ->
GrayLevel[0]}],FormBox[
FormBox[
TemplateBox[{"\"r=1\"", "\"r=2\""}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{}]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{}]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2}]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2}]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Helvetica",
GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic,
StripOnInput -> False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "0", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :>
With[{Typeset`box$8927 = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$8927, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$8927,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0], Editable -> False, Selectable -> False],
",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
RowBox[{"AbsoluteDashing", "[",
RowBox[{"{", "}"}], "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "0", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :>
With[{Typeset`box$8927 = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$8927, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$8927,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0], Editable -> False, Selectable -> False],
",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
RowBox[{"AbsoluteDashing", "[",
RowBox[{"{",
RowBox[{"6", ",", "2"}], "}"}], "]"}]}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{#, ",", #2}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"FontFamily", "\[Rule]", "\"Helvetica\""}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{