-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreProc.py
204 lines (159 loc) · 5.43 KB
/
preProc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import numpy
import scipy.special
from Pipeline import PipelineStage
from Tools import mcol, center_data, cov_mat, within_cov_mat
class PCA(PipelineStage):
def __init__(self):
super().__init__()
self.m = 0
self.mean = None
self.C = None
def compute(self, model, D, L):
nSamples = D.shape[1]
dim = D.shape[0]
m = self.m if self.m <= dim else dim
# Center the data
self.mean = mcol(D.mean(1))
DC = D - self.mean
# Covariance matrix
self.C = numpy.dot(DC, DC.T)/nSamples
# Eigenvalues and Eigenvectors
s, U = numpy.linalg.eigh(self.C)
# Eigenvectors with higher variance eigenvalues
P = U[:, ::-1][:, 0:m]
# Project data
DP = numpy.dot(P.T, D)
model.addPreproc(PCAEval(P))
return model, DP, L
def setDimension(self, m):
self.m = m
def __str__(self):
return 'PCA (m = %d)' % self.m
class PCAEval(PipelineStage):
def __init__(self, P):
super().__init__()
self.P = P
def compute(self, model, D, L):
return model, numpy.dot(self.P.T, D), L
class LDA(PipelineStage):
def __init__(self):
super().__init__()
self.Sb = None
self.Sw = None
self.m = None
def compute(self, model, D, L):
nSamples = D.shape[1]
K = L.max()+1
m = self.m if self.m <= K-1 else K-1
Sw = 0
Sb = 0
# Dataset mean
meanD = mcol(D.mean(1))
for i in range(K):
DCl = D[:, L == i] # take only samples of the class-i
meanClass = mcol(DCl.mean(1)) # compute the mean of the class data
DClC = DCl - meanClass # center the class data
mC = meanClass - meanD # center the mean of class, respect the global mean
## COMPUTING ELEMENT-I OF THE SUMMARY OF Sb
Sb += DClC.shape[1] * numpy.dot(mC, mC.T)
## COMPUTING ELEMENT-I OF THE SUMMARY OF Sw
Sw += numpy.dot(DClC, DClC.T)
self.Sw = Sw = Sw / nSamples
self.Sb = Sb = Sb / nSamples
## COMPUTING THE EIG VALUES OF THE GENERALIZED EIGENVALUE PROBLEM FOR HERMITIAN MATRICES
s, U = scipy.linalg.eigh(Sb, Sw) # numpy here don't work, numpy don't solve the generalized problem
P = U[:, ::-1][:, 0:m] # take the dimension
## PROJECTING DATA ON NEW BASE ##
DP = numpy.dot(P.T, D)
model.addPreproc(LDAEval(P))
return model, DP, L
def setDimension(self, m):
self.m = m
def __str__(self):
return "LDA"
class LDAEval(PipelineStage):
def __init__(self, P):
super().__init__()
self.P = P
def compute(self, model, D, L):
return model, numpy.dot(self.P.T, D), L
class ZNorm(PipelineStage):
def __init__(self):
super().__init__()
def compute(self, model, D, L):
mu = mcol(D.mean(1))
DC = D - mu
C = numpy.dot(DC, DC.T) / D.shape[1]
stdDev = mcol(numpy.diag(C)) ** 0.5
model.addPreproc(ZNormEval(mu, stdDev))
return model, DC / stdDev, L
def __str__(self):
return "Z Normalization"
class ZNormEval(PipelineStage):
def __init__(self, mu, stdDev):
super().__init__()
self.mu = mu
self.stdDev = stdDev
def compute(self, model, D, L):
return model, (D - self.mu)/self.stdDev, L
class L2Norm(PipelineStage):
def __init__(self):
super().__init__()
def compute(self, model, D, L):
mu = mcol(D.mean(1))
DC = D - mu
DN = DC / numpy.linalg.norm(DC, axis=0)
model.addPreproc(L2NormEval(mu))
return model, DN, L
def __str__(self):
return "L2 Normalization"
class L2NormEval(PipelineStage):
def __init__(self, mu):
super().__init__()
self.mu = mu
def compute(self, model, D, L):
DC = D - self.mu
return model, DC/numpy.linalg.norm(DC, axis=0), L
def cdf_GAU_STD(X):
return 0.5*(1 + scipy.special.erf(X/numpy.sqrt(2)))
def inv_cdf_GAU_STD(X):
return numpy.sqrt(2)*scipy.special.erfinv(2*X-1)
def empirical_cdf(X):
N = X.shape[1]
sort_feature = numpy.sort(X, axis=1)
R = numpy.zeros(X.shape)
for i in range(N):
count = mcol(numpy.sum(sort_feature <= X[:, i:i+1], 1))
R[:, i:i+1] = (count + 1) / (N + 2)
return R
class Gaussianization(PipelineStage):
"""
Gaussianization automatically implement also ZNormalization
"""
def __init__(self):
super().__init__()
def compute(self, model, D, L):
"""
Same thing can be done with rankdata() of scipy library
"""
N = D.shape[1]
sort_feature = numpy.sort(D, axis=1)
R = numpy.zeros(D.shape)
for i in range(N):
count = mcol(numpy.sum(sort_feature <= D[:, i:i + 1], 1))
R[:, i:i + 1] = (count + 1) / (N + 2)
model.addPreproc(GaussEval(sort_feature, N))
return model, inv_cdf_GAU_STD(R), L
def __str__(self):
return "Gaussianization"
class GaussEval(PipelineStage):
def __init__(self, s, N):
super().__init__()
self.sort_feature = s
self.N = N
def compute(self, model, D, L):
R = numpy.zeros(D.shape)
for i in range(D.shape[1]):
count = mcol(numpy.sum(self.sort_feature <= D[:, i:i + 1], 1))
R[:, i:i + 1] = (count + 1) / (self.N + 2)
return model, inv_cdf_GAU_STD(R), L