-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplots.py
217 lines (189 loc) · 6.96 KB
/
plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import matplotlib.pyplot as plt
import seaborn as sns
import numpy
from Pipeline import PipelineStage
from Tools import confusion_matrix, DCF_norm_bin, DCF_min, pearson_correlation_mat
from preProc import inv_cdf_GAU_STD
class Histogram(PipelineStage):
def __init__(self):
super().__init__()
self.ext = None
self.dpi = None
self.name = None
self.save = False
self.title = ""
self.perBin = 15
self.labels = []
self.dimensions = []
def setLabels(self, labels):
self.labels = labels
return self
def setDimensions(self, dimensions):
self.dimensions = dimensions
return self
def setSizeBin(self, n):
self.perBin = n
return self
def setTitle(self, title):
self.title = title
return self
def setSaveDirectoryDPI(self, directory, name, ext, dpi):
self.save = True
self.name = directory + "/" + name
self.ext = "." + ext
self.dpi = dpi
return self
def compute(self, model, D, L):
K = L.max() + 1
dims = D.shape[0] if len(self.dimensions) == 0 else len(self.dimensions)
N = D.shape[1]
for dim in range(dims):
plt.figure()
plt.title(self.title)
plt.xlabel(dim if len(self.dimensions) == 0 else self.dimensions[dim])
for k in range(K):
plt.hist(D[dim, L == k], bins=round(N/self.perBin), density=True, alpha=0.4, label=(k if len(self.labels) == 0 else self.labels[k]))
plt.legend()
if self.save:
plt.savefig(self.name+"_"+self.title+"_"+self.dimensions[dim]+self.ext, dpi=self.dpi)
plt.show()
return model, D, L
def __str__(self):
return "Histogram\n"
class Scatter(PipelineStage):
def __init__(self):
super().__init__()
self.ext = None
self.save = False
self.dpi = None
self.name = None
self.labels = []
self.dimensions = []
self.title = ""
def setLabels(self, labels):
self.labels = labels
return self
def setDimensions(self, dimensions):
self.dimensions = dimensions
return self
def setTitle(self, title):
self.title = title
return self
def setSaveDirectoryDPI(self, directory, name, ext, dpi):
self.save = True
self.name = directory+"/"+name
self.ext = "." + ext
self.dpi = dpi
return self
def compute(self, model, D, L):
K = L.max() + 1
dims = D.shape[0] if len(self.dimensions) == 0 else len(self.dimensions)
for attri in range(dims):
for attrj in range(dims):
if attri >= attrj:
continue
plt.figure()
plt.title(self.title)
plt.xlabel(attri if len(self.dimensions) == 0 else self.dimensions[attri])
plt.ylabel(attrj if len(self.dimensions) == 0 else self.dimensions[attrj])
for k in range(K):
plt.scatter(D[attri, L == k], D[attrj, L == k], alpha=0.1, label=(k if len(self.labels) == 0 else self.labels[k]))
plt.legend()
if self.save:
plt.savefig(self.name+"_"+self.title+"_"+self.dimensions[attri]+"_"+self.dimensions[attrj]+self.ext, dpi=self.dpi)
plt.show()
return model, D, L
def __str__(self):
return "Scatter\n"
def print_ROCs(llrs, L, titles, name):
plt.figure()
plt.xlabel("FPR")
plt.ylabel("TPR")
for i in range(len(llrs)):
ts = numpy.array(llrs[i])
ts.sort()
ts = numpy.concatenate((numpy.array([-numpy.inf]), ts.ravel(), numpy.array([+numpy.inf])))
x = []
y = []
for t in ts:
P = (llrs[i] > t) + 0
M = confusion_matrix(P, L)
TN, FN, FP, TP = M[0, 0], M[0, 1], M[1, 0], M[1, 1]
FPR = FP/(TN+FP)
FNR = FN/(FN+TP)
TPR = 1 - FNR
x.append(FPR)
y.append(TPR)
plt.plot(x, y, label=titles[i])
plt.legend()
plt.savefig("./plots/ROCDET/ROC"+name+".png", dpi=600)
plt.show()
def print_DETs(ss, L, titles, name):
figure, ax = plt.subplots()
ax.set(xlabel="FPR", ylabel="FNR")
ticks = [0.001, 0.01, 0.05, 0.20, 0.5, 0.80, 0.95, 0.99, 0.999]
tick_locations = inv_cdf_GAU_STD(numpy.array(ticks))
tick_labels = [
"{:.0%}".format(s) if (100 * s).is_integer() else "{:.1%}".format(s)
for s in ticks
]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels)
ax.set_xlim(-3, 2)
ax.set_yticks(tick_locations)
ax.set_yticklabels(tick_labels)
ax.set_ylim(-3, 1)
for i in range(len(ss)):
ts = numpy.array(ss[i])
ts.sort()
ts = numpy.concatenate((numpy.array([-numpy.inf]), ts.ravel(), numpy.array([+numpy.inf])))
x = []
y = []
for t in ts:
P = (ss[i] > t) + 0
M = confusion_matrix(P, L)
TN, FN, FP, TP = M[0, 0], M[0, 1], M[1, 0], M[1, 1]
FPR = FP / (TN + FP)
FNR = FN / (FN + TP)
x.append(FPR)
y.append(FNR)
ax.plot(inv_cdf_GAU_STD(numpy.array(x)), inv_cdf_GAU_STD(numpy.array(y)), label=titles[i])
ax.legend()
plt.savefig("./plots/ROCDET/DET"+name+".png", dpi=600)
def bayes_error_addToPlot(llr, L, title, colo):
effPriorLogOdds = numpy.linspace(-4, 4, 25)
mindcf = []
dcf = []
for effPriorLogOdd in effPriorLogOdds:
effPrior = 1/(1+numpy.exp(-effPriorLogOdd))
dcf.append(DCF_norm_bin(llr, L, effPrior, 1, 1)) # actually
mindcf.append(DCF_min(llr, L, effPrior, 1, 1)) # minimum
plt.plot(effPriorLogOdds, dcf, label="DCF "+title.__str__(), color=colo)
plt.plot(effPriorLogOdds, mindcf, label="min DCF "+title.__str__(), linestyle="--", color= colo)
def print_DCFs(llrs, L, descriptions, nameFigure, title):
colors = ["b", "r", "g", "y"]
plt.figure()
plt.title(title)
plt.xlabel("log-odds")
plt.ylabel("DCF value")
for i in range(len(llrs)):
bayes_error_addToPlot(llrs[i], L, descriptions[i], colors[i])
plt.ylim([0, 1.1])
plt.xlim([-4, 4])
plt.legend()
plt.savefig("./plots/DCF/"+nameFigure+".png", dpi=300)
plt.show()
def print_pearson_correlation_mat(D, title, directory=None):
dim = D.shape[0]
plt.figure(figsize=(dim, dim))
corrMatr = pearson_correlation_mat(D)
heatmap = sns.heatmap(corrMatr, vmin=0, vmax=1, annot=True, cmap='gist_gray_r')
heatmap.set_title('Pearson correlation matrix '+title, fontdict={'fontsize': 12}, pad=12)
if directory is not None:
plt.savefig(directory+"/"+title+".png", dpi=300)
plt.show()
def print_pearson_correlation_matrices(D, L, labels, directory=None):
K = L.max() + 1
print_pearson_correlation_mat(D, "Dataset", directory)
for k in range(K):
print_pearson_correlation_mat(D[:, L == k], labels[k], directory)