From 79de6bf49308cc1893d816a29e64238a91315057 Mon Sep 17 00:00:00 2001 From: deseilligny Date: Tue, 7 Jul 2020 17:48:16 +0200 Subject: [PATCH] Derniere modif --- MMVII/Doc/Paper/Epipolar_ipol/Epipolar_ipol.tex | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/MMVII/Doc/Paper/Epipolar_ipol/Epipolar_ipol.tex b/MMVII/Doc/Paper/Epipolar_ipol/Epipolar_ipol.tex index e2ee3b7a78..23fd67ced1 100755 --- a/MMVII/Doc/Paper/Epipolar_ipol/Epipolar_ipol.tex +++ b/MMVII/Doc/Paper/Epipolar_ipol/Epipolar_ipol.tex @@ -967,10 +967,13 @@ \subsection{Epipolar resampling without the localisation model} \end{equation} -But, as discussed in \ref{WhyWork}, it is not possible, in the most general +But, as discussed in~\ref{WhyWork}, it is not possible, in the most general case, to recover epipolar geometry from set of homologous points when there exist a functionnal relation between them. +\noindent {\underline {\bf Pro \& Cons:}} We reanalyse now the argument of~\ref{WhyWork}. +Suppose we have already compute an epipolar geometry, and that there exist af functionnal +correspondence between $e_1$ and $e_1$ : %--------------------------------------------- %---------------------------------------------