Skip to content

Commit 749d8fd

Browse files
committed
Update README
1 parent 5ff7e1b commit 749d8fd

File tree

1 file changed

+9
-10
lines changed

1 file changed

+9
-10
lines changed

README.md

Lines changed: 9 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -31,14 +31,13 @@ Or for development, clone the repo and run the following.
3131

3232
pip install -e .
3333

34-
The library requires Python >= 3.9. The installation script will git
35-
clone [AutoGen](https://github.com/microsoft/autogen). You may require [Git Large File Storage](https://git-lfs.com/) if
36-
git is unable to clone the repository otherwise.
34+
The library requires Python >= 3.9. By default (starting with v0.1.3.5), we use [LiteLLM](https://github.com/BerriAI/litellm) as the backend of LLMs. For backward compatibility, we provide backend-support with [AutoGen](https://github.com/microsoft/autogen); when installing, users can add `[autogen]` tag to install a compatible AutoGen version (e.g., `pip install trace-opt[autogen]`). You may require [Git Large File Storage](https://git-lfs.com/) if
35+
git is unable to clone the repository.
3736

3837
## Updates
3938
- **2025.2.7** Trace was featured in the [G-Research NeurIPS highlight](https://www.gresearch.com/news/neurips-paper-reviews-2024-8/) by the Science Director Hugh Salimbeni.
4039
- **2024.12.10** Trace was demoed in person at NeurIPS 2024 Expo.
41-
- **2024.11.05** Ching-An Cheng gave a talk at UW Robotics Colloquium on Trace: [video](https://www.youtube.com/watch?v=T2g1Vo3u_9g).
40+
- **2024.11.05** Ching-An Cheng gave a talk at UW Robotics Colloquium on Trace: [video](https://www.youtube.com/watch?v=T2g1Vo3u_9g).
4241
- **2024.10.21** New [paper](https://arxiv.org/abs/2410.15625) by Nvidia, Stanford, Visa, & Intel applies Trace to
4342
optimize for mapper code of parallel programming (for scientific computing and matrix multiplication). Trace (OptoPrime) learns code achieving 1.3X speed up under 10
4443
minutes, compared to the code optimized by a system engineer expert.
@@ -215,16 +214,16 @@ def train():
215214
agent = train()
216215
```
217216

218-
Defining and training an agent through Trace will give you more flexibility and control over what the agent learns.
217+
Defining and training an agent through Trace will give you more flexibility and control over what the agent learns.
219218

220219
## Tutorials
221220

222221
| **Level** | **Tutorial** | **Run in Colab** | **Description** |
223-
| --- |-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
222+
| --- |-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
224223
| Beginner | [Getting Started](https://microsoft.github.io/Trace/quickstart/quick_start.html) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/microsoft/Trace/blob/website/docs/quickstart/quick_start.ipynb) | Introduces basic primitives like `node` and `bundle`. Showcases a code optimization pipeline. |
225-
| Beginner | [Adaptive AI Agent](https://microsoft.github.io/Trace/quickstart/quick_start_2.html) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/microsoft/Trace/blob/website/docs/quickstart/quick_start_2.ipynb) | Introduce primitive `model` that allows anyone to build self-improving agents that react to environment feedback. Shows how an LLM agent learns to place a shot in a Battleship game.
226-
| Intermediate | [Multi-Agent Collaboration](https://microsoft.github.io/Trace/quickstart/virtualhome.html) | N/A | Demonstrates how Trace can be used for multi-agent collaboration environment in Virtualhome.
227-
| Intermediate | [NLP Prompt Optimization](https://microsoft.github.io/Trace/examples/nlp/bigbench_hard.html) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/microsoft/Trace/blob/website/docs/examples/nlp/bigbench_hard.ipynb) | Shows how Trace can optimizes prompt and code together jointly for BigBench-Hard 23 tasks.
224+
| Beginner | [Adaptive AI Agent](https://microsoft.github.io/Trace/quickstart/quick_start_2.html) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/microsoft/Trace/blob/website/docs/quickstart/quick_start_2.ipynb) | Introduce primitive `model` that allows anyone to build self-improving agents that react to environment feedback. Shows how an LLM agent learns to place a shot in a Battleship game.
225+
| Intermediate | [Multi-Agent Collaboration](https://microsoft.github.io/Trace/quickstart/virtualhome.html) | N/A | Demonstrates how Trace can be used for multi-agent collaboration environment in Virtualhome.
226+
| Intermediate | [NLP Prompt Optimization](https://microsoft.github.io/Trace/examples/nlp/bigbench_hard.html) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/microsoft/Trace/blob/website/docs/examples/nlp/bigbench_hard.ipynb) | Shows how Trace can optimizes prompt and code together jointly for BigBench-Hard 23 tasks.
228227
| Advanced | [Robotic Arm Control](https://microsoft.github.io/Trace/examples/robotics/metaworld.html) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/microsoft/Trace/blob/website/docs/examples/robotics/metaworld.ipynb) | Trace can optimize code to control a robotic arm after observing a full trajectory of interactions. |
229228

230229

@@ -276,7 +275,7 @@ with TraceGraph coming soon).
276275

277276
## LLM API Setup
278277

279-
Currently we rely on AutoGen for LLM caching and API-Key management.
278+
Currently we rely on AutoGen for LLM caching and API-Key management.
280279
AutoGen relies on `OAI_CONFIG_LIST`, which is a file you put in your working directory. It has the format of:
281280

282281
```json lines

0 commit comments

Comments
 (0)