-
Notifications
You must be signed in to change notification settings - Fork 3.1k
/
Copy pathconfigs.py
94 lines (73 loc) · 3.3 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Default configs for TFT experiments.
Contains the default output paths for data, serialised models and predictions
for the main experiments used in the publication.
"""
import os
import data_formatters.qlib_Alpha158
class ExperimentConfig:
"""Defines experiment configs and paths to outputs.
Attributes:
root_folder: Root folder to contain all experimental outputs.
experiment: Name of experiment to run.
data_folder: Folder to store data for experiment.
model_folder: Folder to store serialised models.
results_folder: Folder to store results.
data_csv_path: Path to primary data csv file used in experiment.
hyperparam_iterations: Default number of random search iterations for
experiment.
"""
default_experiments = ["Alpha158"]
def __init__(self, experiment="volatility", root_folder=None):
"""Creates configs based on default experiment chosen.
Args:
experiment: Name of experiment.
root_folder: Root folder to save all outputs of training.
"""
if experiment not in self.default_experiments:
raise ValueError("Unrecognised experiment={}".format(experiment))
# Defines all relevant paths
if root_folder is None:
root_folder = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "outputs")
print("Using root folder {}".format(root_folder))
self.root_folder = root_folder
self.experiment = experiment
self.data_folder = os.path.join(root_folder, "data", experiment)
self.model_folder = os.path.join(root_folder, "saved_models", experiment)
self.results_folder = os.path.join(root_folder, "results", experiment)
# Creates folders if they don't exist
for relevant_directory in [self.root_folder, self.data_folder, self.model_folder, self.results_folder]:
if not os.path.exists(relevant_directory):
os.makedirs(relevant_directory)
@property
def data_csv_path(self):
csv_map = {
"Alpha158": "Alpha158.csv",
}
return os.path.join(self.data_folder, csv_map[self.experiment])
@property
def hyperparam_iterations(self):
return 240 if self.experiment == "volatility" else 60
def make_data_formatter(self):
"""Gets a data formatter object for experiment.
Returns:
Default DataFormatter per experiment.
"""
data_formatter_class = {
"Alpha158": data_formatters.qlib_Alpha158.Alpha158Formatter,
}
return data_formatter_class[self.experiment]()