|
11 | 11 | Recent released features
|
12 | 12 | | Feature | Status |
|
13 | 13 | | -- | ------ |
|
| 14 | +| TCN model | [Released](https://github.com/microsoft/qlib/pull/668) on Nov 4, 2021 | |
14 | 15 | |Temporal Routing Adaptor (TRA) | [Released](https://github.com/microsoft/qlib/pull/531) on July 30, 2021 |
|
15 | 16 | | Transformer & Localformer | [Released](https://github.com/microsoft/qlib/pull/508) on July 22, 2021 |
|
16 | 17 | | Release Qlib v0.7.0 | [Released](https://github.com/microsoft/qlib/releases/tag/v0.7.0) on July 12, 2021 |
|
@@ -278,23 +279,23 @@ The automatic workflow may not suit the research workflow of all Quant researche
|
278 | 279 | # [Quant Model (Paper) Zoo](examples/benchmarks)
|
279 | 280 |
|
280 | 281 | Here is a list of models built on `Qlib`.
|
281 |
| -- [GBDT based on XGBoost (Tianqi Chen, et al. KDD 2016)](qlib/contrib/model/xgboost.py) |
282 |
| -- [GBDT based on LightGBM (Guolin Ke, et al. NIPS 2017)](qlib/contrib/model/gbdt.py) |
283 |
| -- [GBDT based on Catboost (Liudmila Prokhorenkova, et al. NIPS 2018)](qlib/contrib/model/catboost_model.py) |
284 |
| -- [MLP based on pytorch](qlib/contrib/model/pytorch_nn.py) |
285 |
| -- [LSTM based on pytorch (Sepp Hochreiter, et al. Neural omputation 1997)](qlib/contrib/model/pytorch_lstm.py) |
286 |
| -- [GRU based on pytorch (Kyunghyun Cho, et al. 2014)](qlib/contrib/model/pytorch_gru.py) |
287 |
| -- [ALSTM based on pytorch (Yao Qin, et al. IJCAI 2017)](qlib/contrib/model/pytorch_alstm.py) |
288 |
| -- [GATs based on pytorch (Petar Velickovic, et al. 2017)](qlib/contrib/model/pytorch_gats.py) |
289 |
| -- [SFM based on pytorch (Liheng Zhang, et al. KDD 2017)](qlib/contrib/model/pytorch_sfm.py) |
290 |
| -- [TFT based on tensorflow (Bryan Lim, et al. International Journal of Forecasting 2019)](examples/benchmarks/TFT/tft.py) |
291 |
| -- [TabNet based on pytorch (Sercan O. Arik, et al. AAAI 2019)](qlib/contrib/model/pytorch_tabnet.py) |
292 |
| -- [DoubleEnsemble based on LightGBM (Chuheng Zhang, et al. ICDM 2020)](qlib/contrib/model/double_ensemble.py) |
293 |
| -- [TCTS based on pytorch (Xueqing Wu, et al. ICML 2021)](qlib/contrib/model/pytorch_tcts.py) |
294 |
| -- [Transformer based on pytorch (Ashish Vaswani, et al. NeurIPS 2017)](qlib/contrib/model/pytorch_transformer.py) |
295 |
| -- [Localformer based on pytorch (Juyong Jiang, et al.)](qlib/contrib/model/pytorch_localformer.py) |
296 |
| -- [TRA based on pytorch (Hengxu, Dong, et al. KDD 2021)](qlib/contrib/model/pytorch_tra.py) |
297 |
| -- [TCN based on pytorch (Shaojie Bai, et al. 2018)](qlib/contrib/model/pytorch_tcn.py) |
| 282 | +- [GBDT based on XGBoost (Tianqi Chen, et al. KDD 2016)](examples/benchmarks/XGBoost/) |
| 283 | +- [GBDT based on LightGBM (Guolin Ke, et al. NIPS 2017)](examples/benchmarks/LightGBM/) |
| 284 | +- [GBDT based on Catboost (Liudmila Prokhorenkova, et al. NIPS 2018)](examples/benchmarks/CatBoost/) |
| 285 | +- [MLP based on pytorch](examples/benchmarks/MLP/) |
| 286 | +- [LSTM based on pytorch (Sepp Hochreiter, et al. Neural omputation 1997)](examples/benchmarks/LSTM/) |
| 287 | +- [GRU based on pytorch (Kyunghyun Cho, et al. 2014)](examples/benchmarks/GRU/) |
| 288 | +- [ALSTM based on pytorch (Yao Qin, et al. IJCAI 2017)](examples/benchmarks/ALSTM) |
| 289 | +- [GATs based on pytorch (Petar Velickovic, et al. 2017)](examples/benchmarks/GATs/) |
| 290 | +- [SFM based on pytorch (Liheng Zhang, et al. KDD 2017)](examples/benchmarks/SFM/) |
| 291 | +- [TFT based on tensorflow (Bryan Lim, et al. International Journal of Forecasting 2019)](examples/benchmarks/TFT/) |
| 292 | +- [TabNet based on pytorch (Sercan O. Arik, et al. AAAI 2019)](examples/benchmarks/TabNet/) |
| 293 | +- [DoubleEnsemble based on LightGBM (Chuheng Zhang, et al. ICDM 2020)](examples/benchmarks/DoubleEnsemble/) |
| 294 | +- [TCTS based on pytorch (Xueqing Wu, et al. ICML 2021)](examples/benchmarks/TCTS/) |
| 295 | +- [Transformer based on pytorch (Ashish Vaswani, et al. NeurIPS 2017)](examples/benchmarks/Transformer/) |
| 296 | +- [Localformer based on pytorch (Juyong Jiang, et al.)](examples/benchmarks/Localformer/) |
| 297 | +- [TRA based on pytorch (Hengxu, Dong, et al. KDD 2021)](examples/benchmarks/TRA/) |
| 298 | +- [TCN based on pytorch (Shaojie Bai, et al. 2018)](examples/benchmarks/TCN/) |
298 | 299 |
|
299 | 300 | Your PR of new Quant models is highly welcomed.
|
300 | 301 |
|
|
0 commit comments