@@ -2,11 +2,11 @@ Exercises
2
2
=========
3
3
4
4
To do the exercises, copy the content of the 'skeletons' folder as
5
- a new folder named 'workspaces '.
5
+ a new folder named 'workspace '.
6
6
7
7
Then fire an ipython shell and run the work-in-progress script with::
8
8
9
- >>> %run workspace/exercise_XX_script.py arg1 arg2 arg3
9
+ [1] %run workspace/exercise_XX_script.py arg1 arg2 arg3
10
10
11
11
If an exception is triggered, use the ``%debug `` to fire-up a post
12
12
mortem ipdb session.
@@ -24,6 +24,10 @@ Exercise 1: Sentiment Analysis on movie reviews
24
24
25
25
- Evaluate the performance on a held out test set.
26
26
27
+ ipython command line::
28
+
29
+ %run workspace/exercise_01_sentiment.py data/movie_reviews/txt_sentoken/
30
+
27
31
28
32
Exercise 2: Language identification
29
33
-----------------------------------
@@ -33,6 +37,10 @@ Exercise 2: Language identification
33
37
34
38
- Evaluate the performance on some held out test set.
35
39
40
+ ipython command line::
41
+
42
+ %run workspace/exercise_02_language_train_model.py data/languages/paragraphs/
43
+
36
44
37
45
Exercise 3: CLI text classification utility
38
46
-------------------------------------------
@@ -53,3 +61,6 @@ Exercise 4: Face recognition
53
61
Build a classifier that recognize person on faces pictures from the
54
62
Labeled Faces in the Wild dataset.
55
63
64
+ ipython command line::
65
+
66
+ %run workspace/exercise_04_face_recognition.py data/data/labeled_faces_wild/lfw_preprocessed/
0 commit comments