forked from dwave-examples/circuit-fault-diagnosis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
129 lines (98 loc) · 4.76 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import sys
import pandas as pd
from dwave_circuit_fault_diagnosis_demo import three_bit_multiplier, GATES
try:
from dwave.system.samplers import DWaveSampler
from dwave.system.composites import EmbeddingComposite
_qpu = True
except ImportError:
import dwave_qbsolv as qbsolv
_qpu = False
_PY2 = sys.version_info.major == 2
if _PY2:
input = raw_input
def sanitised_input(description, variable, range_):
start = range_[0]
stop = range_[-1]
while True:
ui = input("Input {:15}({:2} <= {:1} <= {:2}): ".format(description, start, variable, stop))
try:
ui = int(ui)
except ValueError:
print("Input type must be int")
continue
if ui not in range_:
print("Input must be between {} and {}".format(start, stop))
continue
return ui
NUM_READS = 1000
if __name__ == '__main__':
####################################################################################################
# get circuit
####################################################################################################
bqm, labels = three_bit_multiplier()
####################################################################################################
# get input from user
####################################################################################################
fixed_variables = {}
print("Enter the test conditions")
A = sanitised_input("multiplier", "A", range(2**3))
fixed_variables.update(zip(('a2', 'a1', 'a0'), "{:03b}".format(A)))
B = sanitised_input("multiplicand", "B", range(2**3))
fixed_variables.update(zip(('b2', 'b1', 'b0'), "{:03b}".format(B)))
P = sanitised_input("product", "P", range(2**6))
fixed_variables.update(zip(('p5', 'p4', 'p3', 'p2', 'p1', 'p0'), "{:06b}".format(P)))
print("\nA = {:03b}".format(A))
print("B = {:03b}".format(B))
print("A*B = {:06b}".format(A * B))
print("P = {:06b}\n".format(P))
fixed_variables = {var: 1 if x == '1' else -1 for (var, x) in fixed_variables.items()}
# fix variables
for var, value in fixed_variables.items():
bqm.fix_variable(var, value)
# 'aux1' becomes disconnected, so needs to be fixed
bqm.fix_variable('aux1', 1) # don't care value
if _qpu:
# find embedding and put on system
print("Running using QPU\n")
sampler = EmbeddingComposite(DWaveSampler())
response = sampler.sample_ising(bqm.linear, bqm.quadratic, num_reads=NUM_READS)
else:
# if no qpu access, use qbsolv's tabu
print("Running using qbsolv's classical tabu search\n")
sampler = qbsolv.QBSolv()
response = sampler.sample_ising(bqm.linear, bqm.quadratic)
####################################################################################################
# output results
####################################################################################################
# responses are sorted in order of increasing energy, so the first energy is the minimum
min_energy = next(response.data()).energy
best_samples = [dict(datum.sample) for datum in response.data() if datum.energy == min_energy]
for sample in best_samples:
for variable in list(sample.keys()):
if 'aux' in variable:
sample.pop(variable)
sample.update(fixed_variables)
best_results = []
for sample in best_samples:
result = {}
for gate_type, gates in sorted(labels.items()):
_, configurations = GATES[gate_type]
for gate_name, gate in sorted(gates.items()):
result[gate_name] = 'valid' if tuple(sample[var] for var in gate) in configurations else 'fault'
best_results.append(result)
best_results = pd.DataFrame(best_results)
# at this point, our filtered "best results" all have the same number of faults, so just grab the first one
num_faults = next(best_results.itertuples()).count('fault')
# num_ground_samples = len(best_results)
# best_results = best_results.groupby(best_results.columns.tolist(), as_index=False).size().reset_index().set_index(0)
best_results = best_results.drop_duplicates().reset_index(drop=True)
num_ground_states = len(best_results)
print("The minimum fault diagnosis found is {} faulty component(s)".format(num_faults))
# print("Out of {} samples, the following {} ground states were returned a total of {} times:".format(
# NUM_READS, num_ground_states, num_ground_samples))
print("{} distinct fault state(s) with this many faults observed".format(num_ground_states))
# verbose output
if len(sys.argv) == 2 and sys.argv[1] == '--verbose':
pd.set_option('display.width', 120)
print(best_results)