-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathno.ml
871 lines (775 loc) · 34.6 KB
/
no.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
open Signatures
(* Type-level dyadic rationals, represeted as surreal sign-sequences, plus +ω and -ω. *)
type zero = Dummy_zero
type 'a plus = Dummy_plus
type 'a minus = Dummy_minus
type plus_omega = Dummy_plus_omega
type minus_omega = Dummy_minus_omega
type _ fin = Zero : zero fin | Plus : 'a fin -> 'a plus fin | Minus : 'a fin -> 'a minus fin
type _ t = Fin : 'a fin -> 'a t | Plus_omega : plus_omega t | Minus_omega : minus_omega t
let zero = Fin Zero
let one = Fin (Plus Zero)
let minus_one = Fin (Minus Zero)
let two = Fin (Plus (Plus Zero))
let minus_two = Fin (Minus (Minus Zero))
let minus_omega = Minus_omega
let plus_omega = Plus_omega
(* Type-level indices for strict inequality < and non-strict inequality ≤. *)
type strict = Dummy_strict
type nonstrict = Dummy_nonstrict
type _ strictness = Strict : strict strictness | Nonstrict : nonstrict strictness
(* An element of "(a,strict,b) lt" is a witness that a<b, and similarly for nonstrict and a≤b. *)
type (_, _, _) lt =
| Plusomega_plusomega : (plus_omega, nonstrict, plus_omega) lt
| Minusomega_minusomega : (minus_omega, nonstrict, minus_omega) lt
| Fin_plusomega : 'a fin -> ('a, 's, plus_omega) lt
| Minusomega_plusomega : (minus_omega, 's, plus_omega) lt
| Minusomega_fin : 'b fin -> (minus_omega, 's, 'b) lt
| Zero_plus : 'b fin -> (zero, 's, 'b plus) lt
| Minus_plus : 'a fin * 'b fin -> ('a minus, 's, 'b plus) lt
| Minus_zero : 'a fin -> ('a minus, 's, zero) lt
| Plus_plus : 'a fin * 'b fin * ('a, 's, 'b) lt -> ('a plus, 's, 'b plus) lt
| Minus_minus : 'a fin * 'b fin * ('a, 's, 'b) lt -> ('a minus, 's, 'b minus) lt
| Zero_zero : (zero, nonstrict, zero) lt
(* ≤, but not <, is reflexive. *)
let rec le_refl : type a. a t -> (a, nonstrict, a) lt = function
| Plus_omega -> Plusomega_plusomega
| Minus_omega -> Minusomega_minusomega
| Fin Zero -> Zero_zero
| Fin (Plus a) -> Plus_plus (a, a, le_refl (Fin a))
| Fin (Minus a) -> Minus_minus (a, a, le_refl (Fin a))
let plusomega_nlt : type a b. (plus_omega, strict, a) lt -> b = function
| Fin_plusomega _ -> .
let le_plusomega : type a. a t -> (a, nonstrict, plus_omega) lt = function
| Minus_omega -> Minusomega_plusomega
| Fin x -> Fin_plusomega x
| Plus_omega -> Plusomega_plusomega
let minusomega_le : type a. a t -> (minus_omega, nonstrict, a) lt = function
| Minus_omega -> Minusomega_minusomega
| Fin x -> Minusomega_fin x
| Plus_omega -> Minusomega_plusomega
let minusomega_lt_plusomega : (minus_omega, strict, plus_omega) lt = Minusomega_plusomega
let zero_lt_plusomega : type s. (zero, s, plus_omega) lt = Fin_plusomega Zero
let minusomega_lt_zero : type s. (minus_omega, s, zero) lt = Minusomega_fin Zero
type (_, _, _) strict_trans =
| Strict_any : (strict, 'a, 'b) strict_trans
| Any_strict : ('a, strict, 'b) strict_trans
| Nonstrict_nonstrict : (nonstrict, nonstrict, nonstrict) strict_trans
type (_, _) has_strict_trans =
| Strict_trans : ('s1, 's2, 's3) strict_trans -> ('s1, 's2) has_strict_trans
let strict_trans : type s1 s2. s1 strictness -> s2 strictness -> (s1, s2) has_strict_trans =
fun s1 s2 ->
match (s1, s2) with
| Strict, _ -> Strict_trans Strict_any
| _, Strict -> Strict_trans Any_strict
| Nonstrict, Nonstrict -> Strict_trans Nonstrict_nonstrict
let rec lt_to_le : type a b s. (a, strict, b) lt -> (a, s, b) lt =
fun lt ->
match lt with
| Fin_plusomega x -> Fin_plusomega x
| Minusomega_plusomega -> Minusomega_plusomega
| Minusomega_fin x -> Minusomega_fin x
| Zero_plus x -> Zero_plus x
| Minus_plus (x, y) -> Minus_plus (x, y)
| Minus_zero x -> Minus_zero x
| Plus_plus (x, y, xy) -> Plus_plus (x, y, lt_to_le xy)
| Minus_minus (x, y, xy) -> Minus_minus (x, y, lt_to_le xy)
(*
let le_left : type a b s. (a, s, b) lt -> a t = function
| Plusomega_plusomega -> Plus_omega
| Minusomega_minusomega -> Minus_omega
| Zero_plus _ -> Fin Zero
| Zero_zero -> Fin Zero
| Fin_plusomega a -> Fin a
| Minusomega_plusomega -> Minus_omega
| Minusomega_fin _ -> Minus_omega
| Minus_plus (a, _) -> Fin (Minus a)
| Minus_zero a -> Fin (Minus a)
| Plus_plus (a, _, _) -> Fin (Plus a)
| Minus_minus (a, _, _) -> Fin (Minus a)
let le_right : type a b s. (a, s, b) lt -> b t = function
| Plusomega_plusomega -> Plus_omega
| Minusomega_minusomega -> Minus_omega
| Zero_plus b -> Fin (Plus b)
| Zero_zero -> Fin Zero
| Fin_plusomega _ -> Plus_omega
| Minusomega_plusomega -> Plus_omega
| Minusomega_fin b -> Fin b
| Minus_plus (_, b) -> Fin (Plus b)
| Minus_zero _ -> Fin Zero
| Plus_plus (_, b, _) -> Fin (Plus b)
| Minus_minus (_, b, _) -> Fin (Minus b)
*)
let rec lt_trans :
type a b c s1 s2 s3.
(s1, s2, s3) strict_trans -> (a, s1, b) lt -> (b, s2, c) lt -> (a, s3, c) lt =
fun tr ab bc ->
match (ab, bc, tr) with
| Plusomega_plusomega, Plusomega_plusomega, Nonstrict_nonstrict -> Plusomega_plusomega
| Minusomega_plusomega, Plusomega_plusomega, _ -> Minusomega_plusomega
| Fin_plusomega a, Plusomega_plusomega, _ -> Fin_plusomega a
| Minusomega_minusomega, Minusomega_minusomega, Nonstrict_nonstrict -> Minusomega_minusomega
| Minusomega_minusomega, Minusomega_plusomega, _ -> Minusomega_plusomega
| Minusomega_minusomega, Minusomega_fin b, _ -> Minusomega_fin b
| Zero_plus _, Fin_plusomega (Plus _), _ -> Fin_plusomega Zero
| Minus_plus (a, _), Fin_plusomega _, _ -> Fin_plusomega (Minus a)
| Minus_zero a, Fin_plusomega _, _ -> Fin_plusomega (Minus a)
| Plus_plus (a, _, _), Fin_plusomega _, _ -> Fin_plusomega (Plus a)
| Zero_zero, Fin_plusomega _, _ -> Fin_plusomega Zero
| Minus_minus (a, _, _), Fin_plusomega _, _ -> Fin_plusomega (Minus a)
| Minusomega_fin _, Fin_plusomega _, _ -> Minusomega_plusomega
| Minusomega_fin _, Zero_plus b, _ -> Minusomega_fin (Plus b)
| Minusomega_fin _, Minus_plus (_, b), _ -> Minusomega_fin (Plus b)
| Minusomega_fin _, Minus_zero _, _ -> Minusomega_fin Zero
| Minusomega_fin _, Plus_plus (_, b, _), _ -> Minusomega_fin (Plus b)
| Minusomega_fin _, Minus_minus (_, b, _), _ -> Minusomega_fin (Minus b)
| Minusomega_fin _, Zero_zero, _ -> Minusomega_fin Zero
| Minus_plus (a, _), Plus_plus (_, b, _), _ -> Minus_plus (a, b)
| Minus_zero a, Zero_plus b, _ -> Minus_plus (a, b)
| Minus_zero a, Zero_zero, _ -> Minus_zero a
| Plus_plus (a, _, ab), Plus_plus (_, c, ac), _ -> Plus_plus (a, c, lt_trans tr ab ac)
| Zero_zero, Zero_plus b, _ -> Zero_plus b
| Zero_zero, Zero_zero, Nonstrict_nonstrict -> Zero_zero
| Minus_minus (a, _, _), Minus_plus (_, b), _ -> Minus_plus (a, b)
| Minus_minus (a, _, _), Minus_zero _, _ -> Minus_zero a
| Minus_minus (a, _, ab), Minus_minus (_, c, bc), _ -> Minus_minus (a, c, lt_trans tr ab bc)
| Zero_plus _, Plus_plus (_, b, _), _ -> Zero_plus b
| Plusomega_plusomega, Fin_plusomega _, _ -> .
| Minusomega_minusomega, Fin_plusomega _, _ -> .
| Minusomega_fin _, Plusomega_plusomega, _ -> .
| Minusomega_plusomega, Fin_plusomega _, _ -> .
| Minusomega_fin _, Minusomega_minusomega, _ -> .
| Minusomega_fin _, Minusomega_plusomega, _ -> .
| Minusomega_fin _, Minusomega_fin _, _ -> .
| Fin_plusomega _, Fin_plusomega _, _ -> .
let rec equal_fin : type a b. a fin -> b fin -> (a, b) Eq.compare =
fun x y ->
match (x, y) with
| Zero, Zero -> Eq
| Plus x, Plus y -> (
match equal_fin x y with
| Eq -> Eq
| Neq -> Neq)
| Minus x, Minus y -> (
match equal_fin x y with
| Eq -> Eq
| Neq -> Neq)
| _ -> Neq
let equal : type a b. a t -> b t -> (a, b) Eq.compare =
fun x y ->
match (x, y) with
| Fin x, Fin y -> equal_fin x y
| Plus_omega, Plus_omega -> Eq
| Minus_omega, Minus_omega -> Eq
| _ -> Neq
let equalb : type a b. a t -> b t -> bool =
fun x y ->
match equal x y with
| Eq -> true
| Neq -> false
(* Inequality is transitive. There are many versions of this, depending on strictness of the inputs and outputs, but the only one we have need for so far is this. *)
let rec lt_trans1 : type a b c s1 s2. (a, s1, b) lt -> (b, s2, c) lt -> (a, s1, c) lt =
fun ab bc ->
match (ab, bc) with
| Plusomega_plusomega, Plusomega_plusomega -> Plusomega_plusomega
| Minusomega_plusomega, Plusomega_plusomega -> Minusomega_plusomega
| Fin_plusomega a, Plusomega_plusomega -> Fin_plusomega a
| Minusomega_minusomega, Minusomega_minusomega -> Minusomega_minusomega
| Minusomega_minusomega, Minusomega_plusomega -> Minusomega_plusomega
| Minusomega_minusomega, Minusomega_fin b -> Minusomega_fin b
| Zero_plus _, Fin_plusomega (Plus _) -> Fin_plusomega Zero
| Minus_plus (a, _), Fin_plusomega _ -> Fin_plusomega (Minus a)
| Minus_zero a, Fin_plusomega _ -> Fin_plusomega (Minus a)
| Plus_plus (a, _, _), Fin_plusomega _ -> Fin_plusomega (Plus a)
| Zero_zero, Fin_plusomega _ -> Fin_plusomega Zero
| Minus_minus (a, _, _), Fin_plusomega _ -> Fin_plusomega (Minus a)
| Minusomega_fin _, Fin_plusomega _ -> Minusomega_plusomega
| Minusomega_fin _, Zero_plus b -> Minusomega_fin (Plus b)
| Minusomega_fin _, Minus_plus (_, b) -> Minusomega_fin (Plus b)
| Minusomega_fin _, Minus_zero _ -> Minusomega_fin Zero
| Minusomega_fin _, Plus_plus (_, b, _) -> Minusomega_fin (Plus b)
| Minusomega_fin _, Minus_minus (_, b, _) -> Minusomega_fin (Minus b)
| Minusomega_fin _, Zero_zero -> Minusomega_fin Zero
| Minus_plus (a, _), Plus_plus (_, b, _) -> Minus_plus (a, b)
| Minus_zero a, Zero_plus b -> Minus_plus (a, b)
| Minus_zero a, Zero_zero -> Minus_zero a
| Plus_plus (a, _, ab), Plus_plus (_, c, ac) ->
let lt = lt_trans1 ab ac in
Plus_plus (a, c, lt)
| Zero_zero, Zero_plus b -> Zero_plus b
| Zero_zero, Zero_zero -> Zero_zero
| Minus_minus (a, _, _), Minus_plus (_, b) -> Minus_plus (a, b)
| Minus_minus (a, _, _), Minus_zero _ -> Minus_zero a
| Minus_minus (a, _, ab), Minus_minus (_, c, bc) ->
let lt = lt_trans1 ab bc in
Minus_minus (a, c, lt)
| Zero_plus _, Plus_plus (_, b, _) -> Zero_plus b
| Plusomega_plusomega, Fin_plusomega _ -> .
| Minusomega_minusomega, Fin_plusomega _ -> .
| Minusomega_fin _, Plusomega_plusomega -> .
| Minusomega_plusomega, Fin_plusomega _ -> .
| Minusomega_fin _, Minusomega_minusomega -> .
| Minusomega_fin _, Minusomega_plusomega -> .
| Minusomega_fin _, Minusomega_fin _ -> .
| Fin_plusomega _, Fin_plusomega _ -> .
(* Decidable test for inequality. *)
let rec compare : type a s b. s strictness -> a t -> b t -> (a, s, b) lt option =
fun s x y ->
let open Monad.Ops (Monad.Maybe) in
match (x, y) with
| Fin Zero, Fin Zero -> (
match s with
| Strict -> None
| Nonstrict -> Some Zero_zero)
| Fin (Plus _), Fin Zero -> None
| Fin (Minus x), Fin Zero -> Some (Minus_zero x)
| Fin Zero, Fin (Plus y) -> Some (Zero_plus y)
| Fin (Plus x), Fin (Plus y) ->
let* r = compare s (Fin x) (Fin y) in
return (Plus_plus (x, y, r))
| Fin (Minus x), Fin (Plus y) -> Some (Minus_plus (x, y))
| Fin Zero, Fin (Minus _) -> None
| Fin (Plus _), Fin (Minus _) -> None
| Fin (Minus x), Fin (Minus y) ->
let* r = compare s (Fin x) (Fin y) in
return (Minus_minus (x, y, r))
| Plus_omega, Fin _ -> None
| Minus_omega, Fin y -> Some (Minusomega_fin y)
| Fin x, Plus_omega -> Some (Fin_plusomega x)
| Fin _, Minus_omega -> None
| Plus_omega, Plus_omega -> (
match s with
| Strict -> None
| Nonstrict -> Some Plusomega_plusomega)
| Minus_omega, Plus_omega -> Some Minusomega_plusomega
| Plus_omega, Minus_omega -> None
| Minus_omega, Minus_omega -> (
match s with
| Strict -> None
| Nonstrict -> Some Minusomega_minusomega)
(* Convert to rationals in ZArith.Q. *)
let q_two = Q.add Q.one Q.one
let to_rat : type a. a t -> Q.t =
fun x ->
let rec fin_to_rat : type a. Q.t -> Q.t -> a fin -> Q.t =
fun accum step x ->
match x with
| Zero -> accum
| Plus x ->
let step = if step = Q.one then step else Q.div (Q.abs step) q_two in
fin_to_rat (Q.add accum step) step x
| Minus x ->
let step = if step = Q.minus_one then step else Q.neg (Q.div (Q.abs step) q_two) in
fin_to_rat (Q.add accum step) step x in
match x with
| Plus_omega -> Q.inf
| Minus_omega -> Q.minus_inf
| Fin Zero -> Q.zero
| Fin (Plus x) -> fin_to_rat Q.one Q.one x
| Fin (Minus x) -> fin_to_rat Q.minus_one Q.minus_one x
(* Conversion from ZArith.Q can fail, if the input is not a dyadic rational. (Note that a similar algorithm for floats would never fail, since all floating-point numbers *are* technically dyadic.) *)
type wrapped_fin = Wrapfin : 'a fin -> wrapped_fin
type wrapped = Wrap : 'a t -> wrapped
let of_rat (x : Q.t) : wrapped option =
let rec of_rat x l r =
let m = Q.div (Q.add l r) q_two in
if x = m then Wrapfin Zero
else if Q.(x < m) then
let (Wrapfin y) = of_rat x l m in
Wrapfin (Minus y)
else
let (Wrapfin y) = of_rat x m r in
Wrapfin (Plus y) in
let rec of_pos x l =
let l' = Q.add l Q.one in
if x = l' then Wrapfin (Plus Zero)
else if Q.(x > l') then
let (Wrapfin y) = of_pos x l' in
Wrapfin (Plus y)
else
let (Wrapfin y) = of_rat x l l' in
Wrapfin (Plus (Minus y)) in
let rec of_neg x r =
let r' = Q.sub r Q.one in
if x = r' then Wrapfin (Minus Zero)
else if Q.(x < r') then
let (Wrapfin y) = of_neg x r' in
Wrapfin (Minus y)
else
let (Wrapfin y) = of_rat x r' r in
Wrapfin (Minus (Plus y)) in
if x = Q.zero then Some (Wrap (Fin Zero))
else if x = Q.inf then Some (Wrap Plus_omega)
else if x = Q.minus_inf then Some (Wrap Minus_omega)
else if Z.log2 x.den = Z.log2up x.den then
if x > Q.zero then
let (Wrapfin y) = of_pos x Q.zero in
Some (Wrap (Fin y))
else
let (Wrapfin y) = of_neg x Q.zero in
Some (Wrap (Fin y))
else None
let to_string : type a. a t -> string = function
| Plus_omega -> "+ω"
| Minus_omega -> "-ω"
| Fin _ as x -> Q.to_string (to_rat x)
(* Our sign-sequences above are morally *forwards* lists of signs, even though OCaml's type-former notation forces us to write them postfix. That is, the type "zero minus plus plus" actually represents the sign-sequence "++-", meaning 1.5. But it is also sometimes useful to have "backwards" lists of signs, so that for instance "then_zero then_minus then_plus then_plus" represents "-++". *)
type 'a then_plus = Dummy_then_plus
type 'a then_minus = Dummy_then_minus
type then_zero = Dummy_then_zero
(* We can prepend a backwards sign sequence onto a forwards one. *)
type (_, _, _) prepend =
| Zero : (then_zero, 'a, 'a) prepend
| Plus : ('a, 'b plus, 'c) prepend -> ('a then_plus, 'b, 'c) prepend
| Minus : ('a, 'b minus, 'c) prepend -> ('a then_minus, 'b, 'c) prepend
let rec prepend_uniq : type a b c c'. (a, b, c) prepend -> (a, b, c') prepend -> (c, c') Eq.t =
fun ab ab' ->
match (ab, ab') with
| Zero, Zero -> Eq
| Plus ab, Plus ab' -> prepend_uniq ab ab'
| Minus ab, Minus ab' -> prepend_uniq ab ab'
let rec prepend_fin : type a b c. b fin -> (a, b, c) prepend -> c fin =
fun b ab ->
match ab with
| Zero -> b
| Plus ab -> prepend_fin (Plus b) ab
| Minus ab -> prepend_fin (Minus b) ab
(* For a backwards 'a and forwards 'b, "('a, 'b) then_lt" says that whenever we prepend 'a onto a forwards sign-sequence 'c, the result is less than 'b. This is a strong sort of inequality a<b. *)
type ('a, 'b) then_lt = { then_lt : 'c 'ac 's. 'c fin -> ('a, 'c, 'ac) prepend -> ('ac, 's, 'b) lt }
type ('a, 'b) then_gt = { then_gt : 'c 'ac 's. 'c fin -> ('a, 'c, 'ac) prepend -> ('b, 's, 'ac) lt }
(* It is strong enough that extending 'a by anything preserves it. *)
let then_plus_lt : type a b. (a, b) then_lt -> (a then_plus, b) then_lt =
fun g -> { then_lt = (fun c (Plus ac) -> g.then_lt (Plus c) ac) }
let then_minus_lt : type a b. (a, b) then_lt -> (a then_minus, b) then_lt =
fun g -> { then_lt = (fun c (Minus ac) -> g.then_lt (Minus c) ac) }
let then_plus_gt : type a b. (a, b) then_gt -> (a then_plus, b) then_gt =
fun g -> { then_gt = (fun c (Plus ac) -> g.then_gt (Plus c) ac) }
let then_minus_gt : type a b. (a, b) then_gt -> (a then_minus, b) then_gt =
fun g -> { then_gt = (fun c (Minus ac) -> g.then_gt (Minus c) ac) }
(* Inequalities b<c and b≤c are preserved by prepending any a onto both b and c. *)
let rec prepend_lt :
type a b c ab ac s.
b fin -> c fin -> (b, s, c) lt -> (a, b, ab) prepend -> (a, c, ac) prepend -> (ab, s, ac) lt =
fun b c lt ab ac ->
match (ab, ac) with
| Zero, Zero -> lt
| Plus ab, Plus ac -> prepend_lt (Plus b) (Plus c) (Plus_plus (b, c, lt)) ab ac
| Minus ab, Minus ac -> prepend_lt (Minus b) (Minus c) (Minus_minus (b, c, lt)) ab ac
(* a prepended onto zero, or anything starting with a plus, is strongly greater than a followed by a minus. *)
let then_minus_lt' : type a b. (a, zero, b) prepend -> (a then_minus, b) then_lt =
fun a_zero ->
{ then_lt = (fun c (Minus a_mc) -> prepend_lt (Minus c) Zero (Minus_zero c) a_mc a_zero) }
let then_minus_plus_lt' : type a b c. b fin -> (a, b plus, c) prepend -> (a then_minus, c) then_lt =
fun b ab ->
{ then_lt = (fun d (Minus a_md) -> prepend_lt (Minus d) (Plus b) (Minus_plus (d, b)) a_md ab) }
let then_plus_gt' : type a b. (a, zero, b) prepend -> (a then_plus, b) then_gt =
fun a_zero ->
{ then_gt = (fun c (Plus a_mc) -> prepend_lt Zero (Plus c) (Zero_plus c) a_zero a_mc) }
let then_plus_minus_gt' : type a b c. b fin -> (a, b minus, c) prepend -> (a then_plus, c) then_gt =
fun b ab ->
{ then_gt = (fun d (Plus a_md) -> prepend_lt (Minus b) (Plus d) (Minus_plus (b, d)) ab a_md) }
(* We define a notion of intrinsically well-typed immutable map, associating to some numbers 'a an element of 'a F.t. *)
module Map = struct
module Make (F : Fam2) = struct
module Key = struct
type nonrec 'a t = 'a t
end
(* First we define a map for finite numbers, then add the two omegas. An element of "a fin_t" is a piece of a map indexed by a backwards sign-sequence a, in which the forward sign-sequence b acts as an index for something parametrized by the prepending of a onto b. *)
type (_, _) node =
| None : ('x, 'a) node
| Some : (('a, zero, 'b) prepend * ('x, 'b) F.t) -> ('x, 'a) node
type (_, _) fin_t =
| Emp : ('x, 'a) fin_t
| Node :
('x, 'a) node * ('x, 'a then_minus) fin_t * ('x, 'a then_plus) fin_t
-> ('x, 'a) fin_t
type 'x t = {
fin : ('x, then_zero) fin_t;
minus_omega : ('x, minus_omega) F.t option;
plus_omega : ('x, plus_omega) F.t option;
}
(* The empty map *)
let empty = { fin = Emp; minus_omega = None; plus_omega = None }
(* 'find_opt' looks up a number in the map and returns its associated value, if any. *)
let rec fin_find : type x a b c. b fin -> (x, a) fin_t -> (a, b, c) prepend -> (x, c) F.t option
=
fun x map ab ->
match map with
| Emp -> None
| Node (y, mmap, pmap) -> (
match x with
| Zero -> (
match y with
| None -> None
| Some (aa, y) ->
let Eq = prepend_uniq ab aa in
Some y)
| Minus x -> fin_find x mmap (Minus ab)
| Plus x -> fin_find x pmap (Plus ab))
let find_opt : type x a. a Key.t -> x t -> (x, a) F.t option =
fun x map ->
match x with
| Fin x -> fin_find x map.fin Zero
| Minus_omega -> map.minus_omega
| Plus_omega -> map.plus_omega
(* 'add' adds an entry to the map, replacing any existing entry for that number. *)
let rec fin_add :
type x a b c. (x, a) fin_t -> b fin -> (a, b, c) prepend -> (x, c) F.t -> (x, a) fin_t =
fun map x ab y ->
match (x, map) with
| Zero, Emp -> Node (Some (ab, y), Emp, Emp)
| Zero, Node (_, mmap, pmap) -> Node (Some (ab, y), mmap, pmap)
| Minus x, Emp -> Node (None, fin_add Emp x (Minus ab) y, Emp)
| Minus x, Node (z, mmap, pmap) -> Node (z, fin_add mmap x (Minus ab) y, pmap)
| Plus x, Emp -> Node (None, Emp, fin_add Emp x (Plus ab) y)
| Plus x, Node (z, mmap, pmap) -> Node (z, mmap, fin_add pmap x (Plus ab) y)
let add : type x a. a Key.t -> (x, a) F.t -> x t -> x t =
fun x y map ->
match x with
| Fin x -> { map with fin = fin_add map.fin x Zero y }
| Minus_omega -> { map with minus_omega = Some y }
| Plus_omega -> { map with plus_omega = Some y }
(* 'remove' removes an entry from the map. *)
let rec fin_remove : type x a b. b fin -> (x, a) fin_t -> (x, a) fin_t =
fun x map ->
match map with
| Emp -> Emp
| Node (z, mmap, pmap) -> (
match x with
| Zero -> Node (None, mmap, pmap)
| Minus x -> Node (z, fin_remove x mmap, pmap)
| Plus x -> Node (z, mmap, fin_remove x pmap))
let remove : type x a. a Key.t -> x t -> x t =
fun x map ->
match x with
| Fin x -> { map with fin = fin_remove x map.fin }
| Minus_omega -> { map with minus_omega = None }
| Plus_omega -> { map with plus_omega = None }
(* 'update' updates an entry in the map. *)
let rec fin_update :
type x a b c.
(x, a) fin_t ->
b fin ->
(a, b, c) prepend ->
((x, c) F.t option -> (x, c) F.t option) ->
(x, a) fin_t =
fun map x ab f ->
match (x, map) with
| Zero, Emp -> (
match f None with
| Some z -> Node (Some (ab, z), Emp, Emp)
| None -> Node (None, Emp, Emp))
| Zero, Node (None, mmap, pmap) -> (
match f None with
| Some z -> Node (Some (ab, z), mmap, pmap)
| None -> Node (None, mmap, pmap))
| Zero, Node (Some (ab', y), mmap, pmap) -> (
let Eq = prepend_uniq ab ab' in
match f (Some y) with
| Some z -> Node (Some (ab, z), mmap, pmap)
| None -> Node (None, mmap, pmap))
| Minus x, Emp -> Node (None, fin_update Emp x (Minus ab) f, Emp)
| Minus x, Node (z, mmap, pmap) -> Node (z, fin_update mmap x (Minus ab) f, pmap)
| Plus x, Emp -> Node (None, Emp, fin_update Emp x (Plus ab) f)
| Plus x, Node (z, mmap, pmap) -> Node (z, mmap, fin_update pmap x (Plus ab) f)
let update : type x a. a Key.t -> ((x, a) F.t option -> (x, a) F.t option) -> x t -> x t =
fun x f map ->
match x with
| Fin x -> { map with fin = fin_update map.fin x Zero f }
| Minus_omega -> { map with minus_omega = f map.minus_omega }
| Plus_omega -> { map with plus_omega = f map.plus_omega }
(* 'map' applies a function to all entries in the map. *)
type 'a mapper = { map : 'g. 'g Key.t -> ('a, 'g) F.t -> ('a, 'g) F.t }
let rec fin_map : type x a. x mapper -> (x, a) fin_t -> (x, a) fin_t =
fun f m ->
match m with
| Emp -> Emp
| Node (None, mmap, pmap) ->
let mmap = fin_map f mmap in
let pmap = fin_map f pmap in
Node (None, mmap, pmap)
| Node (Some (ab, z), mmap, pmap) ->
let mmap = fin_map f mmap in
let fz = f.map (Fin (prepend_fin Zero ab)) z in
let pmap = fin_map f pmap in
Node (Some (ab, fz), mmap, pmap)
let map : type x a. x mapper -> x t -> x t =
fun f { fin; minus_omega; plus_omega } ->
let minus_omega = Option.map (f.map Minus_omega) minus_omega in
let fin = fin_map f fin in
let plus_omega = Option.map (f.map Plus_omega) plus_omega in
{ fin; minus_omega; plus_omega }
type 'a iterator = { it : 'g. 'g Key.t -> ('a, 'g) F.t -> unit }
let rec fin_iter : type x a b. x iterator -> (x, a) fin_t -> unit =
fun f m ->
match m with
| Emp -> ()
| Node (None, mmap, pmap) ->
fin_iter f mmap;
fin_iter f pmap
| Node (Some (ab, z), mmap, pmap) ->
fin_iter f mmap;
f.it (Fin (prepend_fin Zero ab)) z;
fin_iter f pmap
let iter : type x a. x iterator -> x t -> unit =
fun f { fin; minus_omega; plus_omega } ->
Option.iter (f.it Minus_omega) minus_omega;
fin_iter f fin;
Option.iter (f.it Plus_omega) plus_omega
(* 'map_compare' applies one of three polymorphic function to all elements of the map, based on whether their index is less than, greater than, or equal to some specified number, passing a witness of inequality if relevant. This requires a record type to hold the polymorphic mapper arguments, as well as several helper functions. *)
type ('x, 'b) map_compare = {
map_lt : 'a 's. ('a, strict, 'b) lt -> ('x, 'a) F.t -> ('x, 'a) F.t;
map_gt : 'a 's. ('b, strict, 'a) lt -> ('x, 'a) F.t -> ('x, 'a) F.t;
map_eq : ('x, 'b) F.t -> ('x, 'b) F.t;
}
(* "fin_map_lt" applies map_lt to all elements of a fin_t, assuming that that is valid given its parameter, and dually for "fin_map_gt". *)
let rec fin_map_lt :
type a b c x. (x, c) map_compare -> (a, c) then_lt -> (x, a) fin_t -> (x, a) fin_t =
fun f x map ->
match map with
| Emp -> Emp
| Node (z, mmap, pmap) ->
Node
( (match z with
| None -> None
| Some (ab, y) -> Some (ab, f.map_lt (x.then_lt Zero ab) y)),
fin_map_lt f (then_minus_lt x) mmap,
fin_map_lt f (then_plus_lt x) pmap )
let rec fin_map_gt :
type x a b c. (x, c) map_compare -> (a, c) then_gt -> (x, a) fin_t -> (x, a) fin_t =
fun f x map ->
match map with
| Emp -> Emp
| Node (z, mmap, pmap) ->
Node
( (match z with
| None -> None
| Some (ab, y) -> Some (ab, f.map_gt (x.then_gt Zero ab) y)),
fin_map_gt f (then_minus_gt x) mmap,
fin_map_gt f (then_plus_gt x) pmap )
(* Similarly, "fin_map_plusomega" applies a function to all elements of a fin_t, because +ω is greater than them, and dually. *)
let rec fin_map_plusomega :
type x a. (x, plus_omega) map_compare -> (x, a) fin_t -> (x, a) fin_t =
fun f map ->
match map with
| Emp -> Emp
| Node (z, mmap, pmap) ->
Node
( (match z with
| None -> None
| Some (ab, y) -> Some (ab, f.map_lt (Fin_plusomega (prepend_fin Zero ab)) y)),
fin_map_plusomega f mmap,
fin_map_plusomega f pmap )
let rec fin_map_minusomega :
type x a. (x, minus_omega) map_compare -> (x, a) fin_t -> (x, a) fin_t =
fun f map ->
match map with
| Emp -> Emp
| Node (z, mmap, pmap) ->
Node
( (match z with
| None -> None
| Some (ab, y) -> Some (ab, f.map_gt (Minusomega_fin (prepend_fin Zero ab)) y)),
fin_map_minusomega f mmap,
fin_map_minusomega f pmap )
let rec fin_map_compare :
type x a b c.
(x, c) map_compare -> b fin -> (a, b, c) prepend -> (x, a) fin_t -> (x, a) fin_t =
fun f x ab map ->
match map with
| Emp -> Emp
| Node (z, mmap, pmap) -> (
match x with
| Zero ->
let z =
match z with
| None -> None
| Some (a_zero, z) ->
let Eq = prepend_uniq ab a_zero in
Some (ab, f.map_eq z) in
Node (z, fin_map_lt f (then_minus_lt' ab) mmap, fin_map_gt f (then_plus_gt' ab) pmap)
| Plus x ->
let z =
match z with
| None -> None
| Some (a_zero, z) ->
Some (a_zero, f.map_lt (prepend_lt Zero (Plus x) (Zero_plus x) a_zero ab) z)
in
Node
(z, fin_map_lt f (then_minus_plus_lt' x ab) mmap, fin_map_compare f x (Plus ab) pmap)
| Minus x ->
let z =
match z with
| None -> None
| Some (a_zero, z) ->
Some (a_zero, f.map_gt (prepend_lt (Minus x) Zero (Minus_zero x) ab a_zero) z)
in
Node
( z,
fin_map_compare f x (Minus ab) mmap,
fin_map_gt f (then_plus_minus_gt' x ab) pmap ))
let map_compare : type b x. (x, b) map_compare -> b Key.t -> x t -> x t =
fun f x map ->
match x with
| Minus_omega ->
{
minus_omega = Option.map f.map_eq map.minus_omega;
fin = fin_map_minusomega f map.fin;
plus_omega = Option.map (f.map_gt Minusomega_plusomega) map.plus_omega;
}
| Fin x ->
{
minus_omega = Option.map (f.map_lt (Minusomega_fin x)) map.minus_omega;
fin = fin_map_compare f x Zero map.fin;
plus_omega = Option.map (f.map_gt (Fin_plusomega x)) map.plus_omega;
}
| Plus_omega ->
{
minus_omega = Option.map (f.map_lt Minusomega_plusomega) map.minus_omega;
fin = fin_map_plusomega f map.fin;
plus_omega = Option.map f.map_eq map.plus_omega;
}
(* 'fin_least' finds the element in a fin_t with the least index, or None if the map is empty. *)
type ('x, 'a) value =
| Value : ('a, 'b, 'c) prepend * 'b fin * ('x, 'c) F.t -> ('x, 'a) value
| None : ('x, 'a) value
let rec fin_least : type x a. (x, a) fin_t -> (x, a) value =
fun map ->
match map with
| Emp -> None
| Node (x, mmap, pmap) -> (
match fin_least mmap with
| Value (Minus ab, b, y) -> Value (ab, Minus b, y)
| None -> (
match x with
| Some (ab, y) -> Value (ab, Zero, y)
| None -> (
match fin_least pmap with
| Value (Plus ab, b, y) -> Value (ab, Plus b, y)
| None -> None)))
(* And dually for 'fin_greatest'. *)
let rec fin_greatest : type x a. (x, a) fin_t -> (x, a) value =
fun map ->
match map with
| Emp -> None
| Node (x, mmap, pmap) -> (
match fin_greatest pmap with
| Value (Plus ab, b, y) -> Value (ab, Plus b, y)
| None -> (
match x with
| Some (ab, y) -> Value (ab, Zero, y)
| None -> (
match fin_greatest mmap with
| Value (Minus ab, b, y) -> Value (ab, Minus b, y)
| None -> None)))
(* 'add_cut' adds a new entry to the map, with specified index, and whose value is computed from the next-highest and next-lowest entries, whatever they are, by a specified polymorphic function. It requires upper and lower default values to be given in case there is no next-highest or next-lowest entry, i.e. the new entry will be the greatest and/or least one in the map. If the specified index already has an entry, it is NOT replaced, instead the map is returned unchanged (but not untouched, so it is not physically equal to the input). *)
type ('x, 'a) upper =
| Upper : ('a, strict, 'c) lt * ('x, 'c) F.t -> ('x, 'a) upper
| No_upper : ('x, 'a) upper
type ('x, 'a) lower =
| Lower : ('b, strict, 'a) lt * ('x, 'b) F.t -> ('x, 'a) lower
| No_lower : ('x, 'a) lower
let rec add_cut_fin :
type a b c x.
(a, b, c) prepend ->
b fin ->
((x, c) lower -> (x, c) upper -> (x, c) F.t) ->
(x, c) lower ->
(x, c) upper ->
(x, a) fin_t ->
(x, a) fin_t =
fun ab x f lower upper map ->
match (x, map) with
| Plus x, Emp -> Node (None, Emp, add_cut_fin (Plus ab) x f lower upper Emp)
| Minus x, Emp -> Node (None, add_cut_fin (Minus ab) x f lower upper Emp, Emp)
| Zero, Emp -> Node (Some (ab, f lower upper), Emp, Emp)
| Zero, Node (Some _, _, _) -> map
| Zero, Node (None, mmap, pmap) ->
let lower =
match fin_greatest mmap with
| Value (Minus ad, d, z) -> Lower (prepend_lt (Minus d) Zero (Minus_zero d) ad ab, z)
| None -> lower in
let upper =
match fin_least pmap with
| Value (Plus ad, d, z) -> Upper (prepend_lt Zero (Plus d) (Zero_plus d) ab ad, z)
| None -> upper in
Node (Some (ab, f lower upper), mmap, pmap)
| Minus x, Node ((Some (lt, y) as z), mmap, pmap) ->
Node
( z,
add_cut_fin (Minus ab) x f lower
(Upper (prepend_lt (Minus x) Zero (Minus_zero x) ab lt, y))
mmap,
pmap )
| Minus x, Node (None, mmap, pmap) -> (
match fin_least pmap with
| Value (Plus ad, d, y) ->
Node
( None,
add_cut_fin (Minus ab) x f lower
(Upper (prepend_lt (Minus x) (Plus d) (Minus_plus (x, d)) ab ad, y))
mmap,
pmap )
| None -> Node (None, add_cut_fin (Minus ab) x f lower upper mmap, pmap))
| Plus x, Node ((Some (lt, y) as z), mmap, pmap) ->
Node
( z,
mmap,
add_cut_fin (Plus ab) x f
(Lower (prepend_lt Zero (Plus x) (Zero_plus x) lt ab, y))
upper pmap )
| Plus x, Node (None, mmap, pmap) -> (
match fin_greatest mmap with
| Value (Minus ad, d, y) ->
Node
( None,
mmap,
add_cut_fin (Plus ab) x f
(Lower (prepend_lt (Minus d) (Plus x) (Minus_plus (d, x)) ad ab, y))
upper pmap )
| None -> Node (None, mmap, add_cut_fin (Plus ab) x f lower upper pmap))
let add_cut : type x b. b Key.t -> ((x, b) lower -> (x, b) upper -> (x, b) F.t) -> x t -> x t =
fun x f map ->
match x with
| Fin x ->
let lower =
match map.minus_omega with
| None -> No_lower
| Some y -> Lower (Minusomega_fin x, y) in
let upper =
match map.plus_omega with
| None -> No_upper
| Some y -> Upper (Fin_plusomega x, y) in
{ map with fin = add_cut_fin Zero x f lower upper map.fin }
| Minus_omega -> (
match map.minus_omega with
| Some _ -> map
| None ->
{
map with
minus_omega =
Some
(match fin_least map.fin with
| Value (Zero, b, y) -> f No_lower (Upper (Minusomega_fin b, y))
| None -> (
match map.plus_omega with
| Some y -> f No_lower (Upper (Minusomega_plusomega, y))
| None -> f No_lower No_upper));
})
| Plus_omega -> (
match map.plus_omega with
| Some _ -> map
| None ->
{
map with
plus_omega =
Some
(match fin_greatest map.fin with
| Value (Zero, b, y) -> f (Lower (Fin_plusomega b, y)) No_upper
| None -> (
match map.minus_omega with
| Some y -> f (Lower (Minusomega_plusomega, y)) No_upper
| None -> f No_lower No_upper));
})
end
end