This repository was archived by the owner on Mar 7, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
346 lines (273 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import argparse
import time
import numpy as np
import pandas as pd
import streamlit as st
from scipy.stats import pearsonr
from sklearn.metrics import mean_squared_error
from xgboost import XGBRegressor
def input_reader(path_input, path_target):
"""
Read csv files of features and target values and return pd.DataFrame
for both.
Parameters:
path_input (csv): Features file in .csv. Pdbid of complexes has to located in column 0.
path_target (csv): Target file in .csv. This file has to contain a column with
'pdbid' which determines pdbid of complexes.
Returns:
X, Y(tuple): X (features) and Y (target) pd.DataFrame
"""
X = pd.read_csv(path_input, index_col="pdbid")
Y = pd.read_csv(path_target, index_col="pdbid")
#Y = Y.drop(labels=["Unnamed: 0"], axis=1)
Y = Y.reindex(X.index)
return X, Y
def preprocessing(data, var_threshold=0.01, corr_threshold=0.95):
"""
Preprocess features input pd.DataFrame and drop static, quasi-static and
correlated features. Return normalized and processed data in
pd.DataFrame, mean and std of data.
Parameters:
data (pd.DataFrame): Features file in pd.DataFrame.
var_threshold (float): Variance threshold. Features below this
threshold are discarded.
corr_threshold (float): Correlated features are discarded.
Returns:
data, mean, std (tuple): Return processed features and mean and std of all features.
"""
data = data.loc[:, data.var(axis=0) > var_threshold]
corr_matrix = data.corr().abs()
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
to_drop = [
column for column in upper.columns if any(upper[column] > corr_threshold)
]
data = data.drop(to_drop, axis=1)
mean = data.mean()
std = data.std()
data = (data - mean) / std
return data, mean, std
def data_spliter(data, core_set_id, val_set_size=0):
"""
Using "core set id" to splitted data to train and test set.
return dictionary contains train and test set (and val set) features and targets.
Parameters:
data (pd.DataFrame): Features file in pd.DataFrame.
core_set_id (csv): A csv file contain all pdbid of the core set (PDBbind 2016)
val_set_size (float): If not zero, indicate the percentage of data in validation set.
Validation set is created randomly with the stratified split method.
Returns:
sets (dict): Return dictionary contains train and test set (and val set) features and targets.
"""
test_set = data.loc[core_set_id, :]
train_set = data.drop(core_set_id, axis=0)
if val_set_size:
train_set["ba_cat"] = np.ceil(train_set["binding_affinity"] / 1.5)
train_set["ba_cat"].where(train_set["ba_cat"] < 8, 8, inplace=True)
split = StratifiedShuffleSplit(
n_splits=10, test_size=val_set_size, random_state=42
)
for train_index, val_index in split.split(train_set, train_set["ba_cat"]):
strat_train_set = train_set.iloc[list(train_index), :]
strat_val_set = train_set.iloc[list(val_index), :]
strat_train_set.drop(["ba_cat"], axis=1, inplace=True)
strat_val_set.drop(["ba_cat"], axis=1, inplace=True)
x_train = strat_train_set.iloc[:, :-1]
y_train = strat_train_set.iloc[:, -1]
x_val = strat_val_set.iloc[:, :-1]
y_val = strat_val_set.iloc[:, -1]
x_test = test_set.iloc[:, :-1]
y_test = test_set.iloc[:, -1]
sets = {
"x_train": x_train,
"y_train": y_train,
"x_val": x_val,
"y_val": y_val,
"x_test": x_test,
"y_test": y_test,
}
else:
x_train = train_set.iloc[:, :-1]
y_train = train_set.iloc[:, -1]
x_test = test_set.iloc[:, :-1]
y_test = test_set.iloc[:, -1]
sets = {
"x_train": x_train,
"y_train": y_train,
"x_test": x_test,
"y_test": y_test,
}
return sets
def data_creator(
path_x,
path_y,
path_test_id,
var_threshold=0.01,
corr_threshold=0.95,
val_set_size=0,
):
"""
Straightforwarding reading, preprocessing and splitting data.
return the preprocessed and splited data.
Parameters:
path_x (csv): Features file in .csv. Pdbid of complexes has to located in column 0.
path_y (csv): Target file in .csv. This file has to contain a column with
'pdbid' which determines pdbid of complexes.
path_test_id (csv): A csv file contain all pdbid of the core set (PDBbind 2016)
var_threshold (float): Variance threshold. Features below this threshold are discarded.
corr_threshold (float): Correlated features are discarded.
val_set_size (float): If not zero, indicate the percentage of data in validation set.
Validation set is created randomly with the stratified split method.
Returns:
splited (dict), mean (float), std (float): Return dictionary contains preprocessed train
and test set (and val set) features and targets. Also returns mean and std of data.
"""
X, Y = input_reader(path_x, path_y)
X, mean, std = preprocessing(X, var_threshold=0.01, corr_threshold=0.95)
data = pd.concat([X, Y], axis=1)
index_id = list(pd.read_csv(path_test_id)["pdbid"])
splited_data = data_spliter(data, index_id, val_set_size=0)
return splited_data, mean, std
def train_pipline(
path_x,
path_y,
path_test_id,
var_threshold=0.01,
corr_threshold=0.95,
val_set_size=0,
gpu=False,
filename="saved_model.joblib",
):
"""
Straightforwarding reading, preprocessing ,splitting data and training.
return rp, rmse and the trained model.
Parameters:
path_x (csv): Features file in .csv. Pdbid of complexes has to located in column 0.
path_y (csv): Target file in .csv. This file has to contain a column with
'pdbid' which determines pdbid of complexes.
path_test_id (csv): A csv file contain all pdbid of the core set (PDBbind 2016)
var_threshold (float): Variance threshold. Features below this threshold are discarded.
corr_threshold (float): Correlated features are discarded.
val_set_size (float): If not zero, indicate the percentage of data in validation set.
Validation set is created randomly with the stratified split method.
gpu (bool): If GPU is available, XGBoost uses it as an accelerator for the training.
filename (str): Filename of the trained model for save in .joblib.
Returns:
rp (float), rmse (float), xgb_reg (sklearn): Return rp and rmse metrics on the test set and
the trained model.
"""
dataset, mean, std = data_creator(
path_x,
path_y,
path_test_id,
var_threshold=0.01,
corr_threshold=0.95,
val_set_size=0,
)
with open("columns.txt", "w") as f:
for item in list(dataset["x_train"].columns):
f.write(item + "\n")
st.info("mean.csv ,std.csv and columns.txt files are generated.")
pd.DataFrame(mean).to_csv("mean.csv")
pd.DataFrame(std).to_csv("std.csv")
if gpu:
xgb_reg = XGBRegressor(
n_estimators=20000,
max_depth=8,
learning_rate=0.005,
subsample=0.7,
tree_method="gpu_hist",
predictor="gpu_predictor",
)
else:
xgb_reg = XGBRegressor(
n_estimators=20000,
max_depth=8,
learning_rate=0.005,
subsample=0.7,
tree_method="hist",
predictor="cpu_predictor",
)
print("Training is in progressing...\n")
xgb_reg.fit(dataset["x_train"], dataset["y_train"])
y_pred = xgb_reg.predict(dataset["x_test"])
rp = pearsonr(dataset["y_test"], y_pred)[0]
rmse = np.sqrt(mean_squared_error(dataset["y_test"], y_pred))
print(f"Rp: {rp:.3f} RMSE: {rmse:.3f}\n")
xgb_reg.save_model(filename)
return rp, rmse, xgb_reg, mean, std
if __name__ == "__main__":
start = time.time()
print("\n")
print("Job is started.")
print("------------------------------")
parser = argparse.ArgumentParser(
description="""Reading, preprocessing data and training
a XGBoost model"""
)
parser.add_argument("-x", "--path_x", help="path of data features", required=True)
parser.add_argument("-y", "--path_y", help="path of data target", required=True)
parser.add_argument(
"-id", "--path_test_id", help="path of test set pdbid", required=True
)
parser.add_argument(
"-v",
"--var_threshold",
type=float,
default=0.01,
help="Variance threshold is used for discarding static and quasi-static features",
)
parser.add_argument(
"-c",
"--corr_threshold",
type=float,
default=0.95,
help="Correlation threshold is used for discarding the correlated features",
)
# parser.add_argument(
# "-s",
# "--val_set_size",
# type=float,
# default=0,
# help="Determine the percentage of validation set",
# )
parser.add_argument(
"-g",
"--gpu",
type=bool,
default=False,
help="GPU as an accelerator of training",
)
parser.add_argument(
"-f",
"--filename",
type=str,
default="saved_model.json",
help="Filename of the trained model for saving.",
)
args = parser.parse_args()
print("Inputs")
print(f"Path data: {args.path_x}")
print(f"Path target: {args.path_y}")
print(f"Path test id: {args.path_test_id}")
print(f"Variance threshold: {args.var_threshold}")
print(f"Correlation threshold: {args.corr_threshold}")
print(f"Validation set size: {args.val_set_size}")
print(f"GPU: {args.gpu}")
print(f"Filename: {args.filename}")
print(f"------------------------------")
train_pipline(
args.path_x,
args.path_y,
args.path_test_id,
args.var_threshold,
args.corr_threshold,
0,
args.gpu,
args.filename,
)
seconds = end - start
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print("------------------------------")
print(f"Job is done at {h} hours, {m} minutes and {s:.2f} seconds!")
print(f"{args.filename} is created.")