|
| 1 | +(MindSpore) [ma-user work]$python mindNLP_Bit_flowers.py |
| 2 | +Building prefix dict from the default dictionary ... |
| 3 | +Loading model from cache /tmp/jieba.cache |
| 4 | +Loading model cost 1.241 seconds. |
| 5 | +Prefix dict has been built successfully. |
| 6 | +Some weights of BitForImageClassification were not initialized from the model checkpoint at HorcruxNo13/bit-50 and are newly initialized because the shapes did not match: |
| 7 | +- classifier.1.weight: found shape (1000, 2048) in the checkpoint and (102, 2048) in the model instantiated |
| 8 | +- classifier.1.bias: found shape (1000,) in the checkpoint and (102,) in the model instantiated |
| 9 | +You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. |
| 10 | +test-00000-of-00006.parquet: 100%|█████████████████████████████████████████████████████████████████| 420M/420M [02:14<00:00, 3.12MB/s] |
| 11 | +test-00001-of-00006.parquet: 100%|█████████████████████████████████████████████████████████████████| 416M/416M [02:11<00:00, 3.17MB/s] |
| 12 | +test-00002-of-00006.parquet: 0%| | 0.00/429M [00:00<?, ?B/s]Error while downloading from https://cdn-lfs-us-1.hf-mirror.com/repos/b0/d3/b0d3d68b388c3ee41777a414af8253d880c3bb39c69b5fb303194abceea8e81f/68bf7479a332fe74bd6cf9066509d536768603058b539d03ce49aa6b22902b83?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27test-00002-of-00006.parquet%3B+filename%3D%22test-00002-of-00006.parquet%22%3B&Expires=1742347838&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc0MjM0NzgzOH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zL2IwL2QzL2IwZDNkNjhiMzg4YzNlZTQxNzc3YTQxNGFmODI1M2Q4ODBjM2JiMzljNjliNWZiMzAzMTk0YWJjZWVhOGU4MWYvNjhiZjc0NzlhMzMyZmU3NGJkNmNmOTA2NjUwOWQ1MzY3Njg2MDMwNThiNTM5ZDAzY2U0OWFhNmIyMjkwMmI4Mz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=IfSMlxvtnSQpPGjDDIPtQDTpfZK8BcQ2k%7EkTBFk%7EPNYoXH6fJzHZ0VjINpY1zlhPxhp8G2SsD8oxcrAj-QHLA5ysWEp7OKCcyt4Fp5vGP8fpArEw2zd-oDCblRE3WVNpdM1d65-1TkmIxPRoWk%7EiVBpMjAlTagGJguLBiimPMiFHHJYH1Dohvp2D6AYv8cOiyx48hvW58xtFlMZOG0qd-ibzXK9aHoIDRs7FTixLHXDcR2W41MRiJULl18Q4bxnr3%7EpsftaA6xpJje3gS1Q8WXoxtZ5i%7EzoJNchBgvXrs2YAQ83IelrCGMl%7EsFWqPlNkBBnneNr4UBwMDIJB90H5NQ__&Key-Pair-Id=K24J24Z295AEI9: HTTPSConnectionPool(host='cdn-lfs-us-1.hf-mirror.com', port=443): Read timed out. |
| 13 | +Trying to resume download... |
| 14 | +test-00002-of-00006.parquet: 100%|█████████████████████████████████████████████████████████████████| 429M/429M [02:38<00:00, 2.71MB/s] |
| 15 | +test-00002-of-00006.parquet: 0%| | 0.00/429M [02:50<?, ?B/s] |
| 16 | +test-00003-of-00006.parquet: 100%|█████████████████████████████████████████████████████████████████| 412M/412M [02:25<00:00, 2.83MB/s] |
| 17 | +test-00004-of-00006.parquet: 100%|█████████████████████████████████████████████████████████████████| 426M/426M [02:19<00:00, 3.05MB/s] |
| 18 | +test-00005-of-00006.parquet: 100%|█████████████████████████████████████████████████████████████████| 418M/418M [02:27<00:00, 2.83MB/s] |
| 19 | +validation-00000-of-00001.parquet: 100%|███████████████████████████████████████████████████████████| 416M/416M [02:26<00:00, 2.84MB/s] |
| 20 | +Generating train split: 100%|█████████████████████████████████████████████████████████████| 1020/1020 [00:01<00:00, 717.56 examples/s] |
| 21 | +Generating test split: 100%|██████████████████████████████████████████████████████████████| 6149/6149 [00:08<00:00, 710.30 examples/s] |
| 22 | +Generating validation split: 100%|████████████████████████████████████████████████████████| 1020/1020 [00:01<00:00, 819.73 examples/s] |
| 23 | +Saving the dataset (1/1 shards): 100%|██████████████████████████████████████████████████████| 816/816 [00:02<00:00, 338.37 examples/s] |
| 24 | +Saving the dataset (1/1 shards): 100%|██████████████████████████████████████████████████████| 204/204 [00:00<00:00, 221.10 examples/s] |
| 25 | +DatasetDict({ |
| 26 | + train: Dataset({ |
| 27 | + features: ['image', 'label'], |
| 28 | + num_rows: 816 |
| 29 | + }) |
| 30 | + test: Dataset({ |
| 31 | + features: ['image', 'label'], |
| 32 | + num_rows: 204 |
| 33 | + }) |
| 34 | +}) |
| 35 | + |
| 36 | +=== 训练参数 === |
| 37 | + |
| 38 | +=== 先生成np数据 === |
| 39 | + |
| 40 | +=== 将预处理后的数据集转换为MindSpore格式 === |
| 41 | + |
| 42 | +=== 训练前测试 === |
| 43 | +.真实标签: 26 |
| 44 | +预测标签: 25 |
| 45 | +Downloading builder script: 4.20kB [00:00, 11.8MB/s] |
| 46 | + |
| 47 | +=== 创建Trainer实例 === |
| 48 | + |
| 49 | +=== 训练 === |
| 50 | + 0%| | 0/120 [00:00<?, ?it/s] 1%|▊ | 1/120 [00:09<18:09, 9.15s/it]{'eval_loss': 3.5184175968170166, 'eval_accuracy': 0.2734375, 'eval_runtime': 1.0791, 'eval_samples_per_second': 0.927, 'eval_steps_per_second': 0.927, 'epoch': 1.0} |
| 51 | +{'eval_loss': 1.7758612632751465, 'eval_accuracy': 0.75, 'eval_runtime': 0.998, 'eval_samples_per_second': 1.002, 'eval_steps_per_second': 1.002, 'epoch': 2.0} |
| 52 | +{'eval_loss': 0.9314232468605042, 'eval_accuracy': 0.875, 'eval_runtime': 0.9619, 'eval_samples_per_second': 1.04, 'eval_steps_per_second': 1.04, 'epoch': 3.0} |
| 53 | +{'eval_loss': 0.6095938682556152, 'eval_accuracy': 0.8984375, 'eval_runtime': 0.9827, 'eval_samples_per_second': 1.018, 'eval_steps_per_second': 1.018, 'epoch': 4.0} |
| 54 | +{'loss': 1.7124, 'learning_rate': 2.916666666666667e-05, 'epoch': 4.17} |
| 55 | + 42%|████████████████████████████████████████ | 50/120 [09:18<11:06, 9.52s/it]{'eval_loss': 0.4878421127796173, 'eval_accuracy': 0.90625, 'eval_runtime': 0.9954, 'eval_samples_per_second': 1.005, 'eval_steps_per_second': 1.005, 'epoch': 5.0} |
| 56 | +{'eval_loss': 0.4401741027832031, 'eval_accuracy': 0.90625, 'eval_runtime': 0.9954, 'eval_samples_per_second': 1.005, 'eval_steps_per_second': 1.005, 'epoch': 6.0} |
| 57 | +{'eval_loss': 0.42397767305374146, 'eval_accuracy': 0.921875, 'eval_runtime': 1.0152, 'eval_samples_per_second': 0.985, 'eval_steps_per_second': 0.985, 'epoch': 7.0} |
| 58 | +{'eval_loss': 0.4162144362926483, 'eval_accuracy': 0.921875, 'eval_runtime': 0.9384, 'eval_samples_per_second': 1.066, 'eval_steps_per_second': 1.066, 'epoch': 8.0} |
| 59 | +{'loss': 0.0363, 'learning_rate': 8.333333333333334e-06, 'epoch': 8.33} |
| 60 | +{'eval_loss': 0.4113974869251251, 'eval_accuracy': 0.921875, 'eval_runtime': 0.9942, 'eval_samples_per_second': 1.006, 'eval_steps_per_second': 1.006, 'epoch': 9.0} |
| 61 | +{'eval_loss': 0.40957605838775635, 'eval_accuracy': 0.921875, 'eval_runtime': 1.394, 'eval_samples_per_second': 0.717, 'eval_steps_per_second': 0.717, 'epoch': 10.0} |
| 62 | +{'train_runtime': 1194.294, 'train_samples_per_second': 6.431, 'train_steps_per_second': 0.1, 'train_loss': 0.7326235515375932, 'epoch': 10.0} |
| 63 | +100%|███████████████████████████████████████████████████████████████████████████████████████████████| 120/120 [19:54<00:00, 9.95s/it] |
| 64 | +100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 3.53it/s] |
| 65 | +Test Accuracy: 0.9219 |
| 66 | + |
| 67 | +=== 训练后测试 === |
| 68 | +真实标签: 26 |
| 69 | +预测标签: 26 |
0 commit comments