forked from nianticlabs/monodepth2
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patherr_eval.py
102 lines (77 loc) · 3.26 KB
/
err_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
### This is a re-implementation of export_gt_depth.py + evaluate_depth.py,
### Compare with err_train in compare_eval.py
import numpy as np
import cv2
from layers import disp_to_depth
from compare_eval import depth_metric_names
def error_disp(disp, gt_depth, opt, use_depth=False):
"""The version used in evaluate_depth.py
scale-resize-inverse
"""
gt_height, gt_width = gt_depth.shape[:2]
if use_depth:
pred_depth = disp.cpu()[0, 0].numpy()
pred_depth = cv2.resize(pred_depth, (gt_width, gt_height))
else:
if not opt.depth_ref_mode:
scaled_disp, _ = disp_to_depth(disp, opt.min_depth, opt.max_depth)
scaled_disp = scaled_disp.cpu()[0, 0].numpy()
scaled_disp = cv2.resize(scaled_disp, (gt_width, gt_height))
pred_depth = 1 / scaled_disp
else:
_, pred_depth = disp_to_depth(disp, opt.min_depth, opt.max_depth, opt.ref_depth, opt.depth_ref_mode)
pred_depth = pred_depth.cpu()[0, 0].numpy()
pred_depth = cv2.resize(pred_depth, (gt_width, gt_height))
losses = compute_depth_losses(gt_depth, pred_depth, depth_metric_names, opt)
return losses
def compute_depth_losses(gt_depth, pred_depth, depth_metric_names, opt):
MIN_DEPTH = 1e-3
MAX_DEPTH = 80
gt_height, gt_width = gt_depth.shape[:2]
losses = {}
### creating the mask
if opt.eval_split == "eigen" or opt.eval_split == "eigen_benchmark":
# print("cropping")
mask = np.logical_and(gt_depth > MIN_DEPTH, gt_depth < MAX_DEPTH)
crop = np.array([0.40810811 * gt_height, 0.99189189 * gt_height,
0.03594771 * gt_width, 0.96405229 * gt_width]).astype(np.int32)
crop_mask = np.zeros(mask.shape)
crop_mask[crop[0]:crop[1], crop[2]:crop[3]] = 1
mask = np.logical_and(mask, crop_mask)
else:
mask = gt_depth > 0
### applying the mask
pred_depth = pred_depth[mask]
gt_depth = gt_depth[mask]
### median normalziation
pred_depth *= opt.pred_depth_scale_factor
if not opt.disable_median_scaling:
ratio = np.median(gt_depth) / np.median(pred_depth)
pred_depth *= ratio
### clamp
pred_depth[pred_depth < MIN_DEPTH] = MIN_DEPTH
pred_depth[pred_depth > MAX_DEPTH] = MAX_DEPTH
### calculating error
depth_errors = compute_errors(gt_depth, pred_depth)
for i, metric in enumerate(depth_metric_names):
losses[metric] = np.array(depth_errors[i])
return losses
def compute_errors(gt, pred):
"""Computation of error metrics between predicted and ground truth depths
"""
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
rmse_log = (np.log(gt) - np.log(pred)) ** 2
rmse_log = np.sqrt(rmse_log.mean())
abs_rel = np.mean(np.abs(gt - pred) / gt)
# sq_rel = np.mean(((gt - pred) ** 2) / (gt**2))
sq_rel = np.mean(((gt - pred) ** 2) / gt)
d = np.log(pred) - np.log(gt)
d2 = d ** 2
si_log = np.sqrt(d2.mean() - d.mean()**2)
irmse = np.sqrt( ((1/gt - 1/pred)**2).mean() )
return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3, si_log, irmse