forked from Jittor/JGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcyclegan.py
241 lines (200 loc) · 8.63 KB
/
cyclegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import argparse
import os
import numpy as np
import math
import datetime
import time
from models import *
from datasets import *
from utils import *
jt.flags.use_cuda = 1
parser = argparse.ArgumentParser()
parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from")
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--dataset_name", type=str, default="monet2photo", help="name of the dataset")
parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_height", type=int, default=256, help="size of image height")
parser.add_argument("--img_width", type=int, default=256, help="size of image width")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=100, help="interval between saving generator outputs")
parser.add_argument("--checkpoint_interval", type=int, default=-1, help="interval between saving model checkpoints")
parser.add_argument("--n_residual_blocks", type=int, default=9, help="number of residual blocks in generator")
parser.add_argument("--lambda_cyc", type=float, default=10.0, help="cycle loss weight")
parser.add_argument("--lambda_id", type=float, default=5.0, help="identity loss weight")
opt = parser.parse_args()
print(opt)
# Create sample and checkpoint directories
os.makedirs("images/%s" % opt.dataset_name, exist_ok=True)
os.makedirs("saved_models/%s" % opt.dataset_name, exist_ok=True)
# Losses
criterion_GAN = nn.MSELoss()
criterion_cycle = nn.L1Loss()
criterion_identity = nn.L1Loss()
input_shape = (opt.channels, opt.img_height, opt.img_width)
# Initialize generator and discriminator
G_AB = GeneratorResNet(input_shape, opt.n_residual_blocks)
G_BA = GeneratorResNet(input_shape, opt.n_residual_blocks)
D_A = Discriminator(input_shape)
D_B = Discriminator(input_shape)
# Optimizers
optimizer_G = nn.Adam(
G_AB.parameters() + G_BA.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)
)
optimizer_D_A = nn.Adam(D_A.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D_B = nn.Adam(D_B.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
# Buffers of previously generated samples
fake_A_buffer = ReplayBuffer()
fake_B_buffer = ReplayBuffer()
# Image transformations
transform_ = [
transform.Resize(int(opt.img_height * 1.12), Image.BICUBIC),
transform.RandomCrop((opt.img_height, opt.img_width)),
transform.RandomHorizontalFlip(),
transform.ImageNormalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
# Training data loader
dataloader = ImageDataset("../../data/%s" % opt.dataset_name, transform_=transform_, unaligned=True).set_attrs(batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu)
val_dataloader = ImageDataset("../../data/%s" % opt.dataset_name, transform_=transform_, unaligned=True, mode="test").set_attrs(batch_size=5, shuffle=True, num_workers=1)
import cv2
def save_image(img, path, nrow=10, padding=5):
N,C,W,H = img.shape
if (N%nrow!=0):
print("N%nrow!=0")
return
ncol=int(N/nrow)
img_all = []
for i in range(ncol):
img_ = []
for j in range(nrow):
img_.append(img[i*nrow+j])
img_.append(np.zeros((C,W,padding)))
img_all.append(np.concatenate(img_, 2))
img_all.append(np.zeros((C,padding,img_all[0].shape[2])))
img = np.concatenate(img_all, 1)
img = np.concatenate([np.zeros((C,padding,img.shape[2])), img], 1)
img = np.concatenate([np.zeros((C,img.shape[1],padding)), img], 2)
min_=img.min()
max_=img.max()
img=(img-min_)/(max_-min_)*255
img=img.transpose((1,2,0))
if C==3:
img = img[:,:,::-1]
cv2.imwrite(path,img)
def sample_images(batches_done):
"""Saves a generated sample from the test set"""
imgs = next(iter(val_dataloader))
G_AB.eval()
G_BA.eval()
real_A = imgs[0].stop_grad()
fake_B = G_AB(real_A)
real_B = imgs[1].stop_grad()
fake_A = G_BA(real_B)
# Arange images along x-axis
real_A_ = []
for i in range(5): real_A_.append(real_A.numpy()[i])
real_A = np.concatenate(real_A_, -1)[np.newaxis,:,:,:]
real_B_ = []
for i in range(5): real_B_.append(real_B.numpy()[i])
real_B = np.concatenate(real_B_, -1)[np.newaxis,:,:,:]
fake_A_ = []
for i in range(5): fake_A_.append(fake_A.numpy()[i])
fake_A = np.concatenate(fake_A_, -1)[np.newaxis,:,:,:]
fake_B_ = []
for i in range(5): fake_B_.append(fake_B.numpy()[i])
fake_B = np.concatenate(fake_B_, -1)[np.newaxis,:,:,:]
# Arange images along y-axis
image_grid = np.concatenate((real_A, fake_B, real_B, fake_A), 0)
save_image(image_grid, "images/%s/%s.png" % (opt.dataset_name, batches_done), 1)
# ----------
# Training
# ----------
prev_time = time.time()
for epoch in range(opt.epoch, opt.n_epochs):
for i, batch in enumerate(dataloader):
# Set model input
real_A = batch[0]
real_B = batch[1]
# Adversarial ground truths
valid = jt.array(np.ones((real_A.size(0), *D_A.output_shape))).float32().stop_grad()
fake = jt.array(np.zeros((real_A.size(0), *D_A.output_shape))).float32().stop_grad()
# ------------------
# Train Generators
# ------------------
G_AB.train()
G_BA.train()
# Identity loss
loss_id_A = criterion_identity(G_BA(real_A), real_A)
loss_id_B = criterion_identity(G_AB(real_B), real_B)
loss_identity = (loss_id_A + loss_id_B) / 2
# GAN loss
fake_B = G_AB(real_A)
loss_GAN_AB = criterion_GAN(D_B(fake_B), valid)
fake_A = G_BA(real_B)
loss_GAN_BA = criterion_GAN(D_A(fake_A), valid)
loss_GAN = (loss_GAN_AB + loss_GAN_BA) / 2
# Cycle loss
recov_A = G_BA(fake_B)
loss_cycle_A = criterion_cycle(recov_A, real_A)
recov_B = G_AB(fake_A)
loss_cycle_B = criterion_cycle(recov_B, real_B)
loss_cycle = (loss_cycle_A + loss_cycle_B) / 2
# Total loss
loss_G = loss_GAN + opt.lambda_cyc * loss_cycle + opt.lambda_id * loss_identity
optimizer_G.step(loss_G)
# -----------------------
# Train Discriminator A
# -----------------------
# Real loss
loss_real = criterion_GAN(D_A(real_A), valid)
# Fake loss (on batch of previously generated samples)
fake_A_ = fake_A_buffer.push_and_pop(fake_A)
loss_fake = criterion_GAN(D_A(fake_A_.stop_grad()), fake)
# Total loss
loss_D_A = (loss_real + loss_fake) / 2
optimizer_D_A.step(loss_D_A)
# -----------------------
# Train Discriminator B
# -----------------------
# Real loss
loss_real = criterion_GAN(D_B(real_B), valid)
# Fake loss (on batch of previously generated samples)
fake_B_ = fake_B_buffer.push_and_pop(fake_B)
fake_B_.sync()
loss_fake = criterion_GAN(D_B(fake_B_.stop_grad()), fake)
# Total loss
loss_D_B = (loss_real + loss_fake) / 2
optimizer_D_B.step(loss_D_B)
loss_D = (loss_D_A + loss_D_B) / 2
# --------------
# Log Progress
# --------------
# Determine approximate time left
batches_done = epoch * len(dataloader) + i
batches_left = opt.n_epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
if i % 50 == 0:
# Print log
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, adv: %f, cycle: %f, identity: %f] ETA: %s"
% (
epoch,
opt.n_epochs,
i,
len(dataloader),
loss_D.data[0],
loss_G.data[0],
loss_GAN.data[0],
loss_cycle.data[0],
loss_identity.data[0],
time_left,
)
)
# If at sample interval save image
if batches_done % opt.sample_interval == 0:
sample_images(batches_done)