-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathee660_project.py
197 lines (170 loc) · 6.7 KB
/
ee660_project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from PIL import Image
import numpy as np
import pandas as pd
import time
import scipy.io as sio
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
# Dataset dimensions
N = 6283
D = 400
# Load feature dataset and convert to grayscale
X = []
for i in range(1, N+1):
img = Image.open("./trainResized/{}.Bmp".format(str(i)))
img = img.convert("LA")
imgData = list(img.getdata())
img = []
for value in imgData:
img.append(value[0]/value[1])
X.append(img)
X = pd.DataFrame(X)
# Load label dataset
yReal = pd.read_csv("trainLabels.csv", usecols=[1])
yClass = yReal.iloc[0:N]
y = yClass.copy()
for i in range(0, N):
y.iloc[i] = ord(str(yClass.iloc[i].values)[2])
# Divide training/test sets
Ntrain = 5000
def split_dataset(data, trainSize):
np.random.seed(0)
testSize = int(len(data) - trainSize)
shuffled_ind = np.random.permutation(len(data))
train_ind = shuffled_ind[testSize:]
test_ind = shuffled_ind[:testSize]
return data.iloc[train_ind].reset_index(drop=True), data.iloc[test_ind].reset_index(drop=True)
Xtrain, Xtest = split_dataset(X, Ntrain)
ytrain, ytest = split_dataset(y, Ntrain)
ytrain = ytrain.values.ravel()
ytest = ytest.values.ravel()
# Dimensionality reduction
from sklearn.decomposition import PCA
pca = PCA()
pca.fit(Xtrain)
cumsum = np.cumsum(pca.explained_variance_ratio_)
d = np.argmax(cumsum >= 0.95) + 1
print("PCA results: min dimensions = ", d, ", dimensions used = ", 100)
pca = PCA(n_components=100)
Xtrain_red = pca.fit_transform(Xtrain)
Xtest_red = pca.transform(Xtest)
# Support vector machine classifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
print("\n***** SUPPORT VECTOR MACHINE *****")
rbf_svm_best_mean = 0.
rbf_svm_best_param = [0., 0.]
cv_mean_acc = np.zeros((3, 10))
i = -1
for g in np.logspace(-3, -1, 3):
i = i + 1
j = -1
for c in np.linspace(3.5, 5, 10):
j = j + 1
rbf_svm_clf = Pipeline((
("scaler", StandardScaler()),
("svm_clf", SVC(kernel="rbf", gamma=g, C=c))
))
time_start = time.clock()
cv_accuracies = cross_val_score(rbf_svm_clf, Xtrain_red, ytrain, cv=5, scoring="accuracy")
time_elapsed = time.clock() - time_start
cv_mean_acc[i, j] = np.mean(cv_accuracies)
print("CV mean = ", cv_mean_acc[i, j], ", CV training time = ", time_elapsed)
if cv_mean_acc[i, j] > rbf_svm_best_mean:
rbf_svm_best_mean = cv_mean_acc[i, j]
rbf_svm_best_param = [g, c]
sio.savemat('rbf_svm_cv_mean_acc.mat', {'cv_mean_acc': cv_mean_acc})
print("CV results: gamma = ", rbf_svm_best_param[0], ", C = ", rbf_svm_best_param[1])
rbf_svm_best = Pipeline((
("scaler", StandardScaler()),
("svm_clf", SVC(kernel="rbf", gamma=rbf_svm_best_param[0], C=rbf_svm_best_param[1], probability=True))
))
time_start = time.clock()
rbf_svm_best.fit(Xtrain_red, ytrain)
time_elapsed = time.clock() - time_start
ytrain_pred = rbf_svm_best.predict(Xtrain_red)
train_accuracy = accuracy_score(ytrain, ytrain_pred)
print("Training accuracy = ", train_accuracy, ", training time = ", time_elapsed)
ytest_pred = rbf_svm_best.predict(Xtest_red)
test_accuracy = accuracy_score(ytest, ytest_pred)
print("Test accuracy = ", test_accuracy)
# k-nearest neighbors classifier
from sklearn.neighbors import KNeighborsClassifier
print("\n***** K-NEAREST NEIGHBORS *****")
knn_best_mean = 0.
knn_best_param = ['uniform', 1]
cv_mean_acc = np.zeros((2, 10))
i = -1
for weigh in ['uniform', 'distance']:
i = i + 1
j = -1
for neigh in range(1, 11):
j = j + 1
knn_clf = KNeighborsClassifier(weights=weigh, n_neighbors=neigh)
time_start = time.clock()
cv_accuracies = cross_val_score(knn_clf, Xtrain_red, ytrain, cv=5, scoring="accuracy")
time_elapsed = time.clock() - time_start
cv_mean_acc[i, j] = np.mean(cv_accuracies)
print("CV mean accuracy = ", cv_mean_acc[i, j], ", CV training time = ", time_elapsed)
if cv_mean_acc[i, j] > knn_best_mean:
knn_best_mean = cv_mean_acc[i, j]
knn_best_param = [weigh, neigh]
sio.savemat('knn_cv_mean_acc.mat', {'cv_mean_acc': cv_mean_acc})
print("CV results: weights = ", knn_best_param[0], ", n_neighbors = ", knn_best_param[1])
knn_best = KNeighborsClassifier(weights=knn_best_param[0], n_neighbors=knn_best_param[1])
time_start = time.clock()
knn_best.fit(Xtrain_red, ytrain)
time_elapsed = time.clock() - time_start
ytrain_pred = knn_best.predict(Xtrain_red)
train_accuracy = accuracy_score(ytrain, ytrain_pred)
print("Training accuracy = ", train_accuracy, ", training time = ", time_elapsed)
ytest_pred = knn_best.predict(Xtest_red)
test_accuracy = accuracy_score(ytest, ytest_pred)
print("Test accuracy = ", test_accuracy)
# Random forest classifier
from sklearn.ensemble import RandomForestClassifier
print("\n***** RANDOM FOREST *****")
rnd_best_mean = 0.
rnd_best_param = 0
cv_mean_acc = np.zeros(10)
i = -1
for nest in 5*np.logspace(2, 3, 10).astype(int):
i = i + 1
rnd_clf = RandomForestClassifier(n_estimators=nest)
time_start = time.clock()
cv_accuracies = cross_val_score(rnd_clf, Xtrain_red, ytrain, cv=5, scoring="accuracy")
time_elapsed = time.clock() - time_start
cv_mean_acc[i] = np.mean(cv_accuracies)
print("CV mean = ", cv_mean_acc[i], ", CV training time = ", time_elapsed)
if cv_mean_acc[i] > rnd_best_mean:
rnd_best_mean = cv_mean_acc[i]
rnd_best_param = nest
sio.savemat('rnd_cv_mean_acc.mat', {'cv_mean_acc': cv_mean_acc})
print("CV results: n_estimators = ", rnd_best_param)
rnd_best = RandomForestClassifier(n_estimators=rnd_best_param)
time_start = time.clock()
rnd_best.fit(Xtrain_red, ytrain)
time_elapsed = time.clock() - time_start
ytrain_pred = rnd_best.predict(Xtrain_red)
train_accuracy = accuracy_score(ytrain, ytrain_pred)
print("Training accuracy = ", train_accuracy, ", training time = ", time_elapsed)
ytest_pred = rnd_best.predict(Xtest_red)
test_accuracy = accuracy_score(ytest, ytest_pred)
print("Test accuracy = ", test_accuracy)
# Voting classifier
from sklearn.ensemble import VotingClassifier
print("\n***** SOFT VOTING *****")
voting_clf = VotingClassifier(
estimators=[('svc', rbf_svm_best), ('knn', knn_best), ('rf', rnd_best)],
voting='soft'
)
time_start = time.clock()
voting_clf.fit(Xtrain_red, ytrain)
time_elapsed = time.clock() - time_start
ytrain_pred = voting_clf.predict(Xtrain_red)
train_accuracy = accuracy_score(ytrain, ytrain_pred)
print("Training accuracy = ", train_accuracy, ", training time = ", time_elapsed)
ytest_pred = voting_clf.predict(Xtest_red)
test_accuracy = accuracy_score(ytest, ytest_pred)
print("Test accuracy = ", test_accuracy)