Skip to content

Commit 9b87073

Browse files
authored
Merge pull request #53 from SeeleVolle/mlperf-inference-results-scc24
Mlperf inference results scc24 for scc104 with cpu and gpu
2 parents c77698c + 3d060cf commit 9b87073

40 files changed

+1871
-0
lines changed
Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
TBD
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,3 @@
1+
| Model | Scenario | Accuracy | Throughput | Latency (in ms) |
2+
|---------|------------|------------|--------------|-------------------|
3+
| bert-99 | offline | 90.8749 | 2.356 | - |
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,53 @@
1+
This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops).
2+
3+
*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.*
4+
5+
## Host platform
6+
7+
* OS version: Linux-6.1.110-1.el9.elrepo.x86_64-x86_64-with-glibc2.34
8+
* CPU version: x86_64
9+
* Python version: 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0]
10+
* MLCommons CM version: 3.2.4
11+
12+
## CM Run Command
13+
14+
See [CM installation guide](https://docs.mlcommons.org/inference/install/).
15+
16+
```bash
17+
pip install -U cmind
18+
19+
cm rm cache -f
20+
21+
cm pull repo mlcommons@cm4mlops --checkout=5aeaffdca72142871dcde95ebf8a37e65fe3e06e
22+
23+
cm run script \
24+
--tags=run-mlperf,inference,_r4.1-dev \
25+
--model=bert-99 \
26+
--implementation=reference \
27+
--framework=pytorch \
28+
--category=edge \
29+
--scenario=Offline \
30+
--execution_mode=valid \
31+
--device=cpu
32+
```
33+
*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts),
34+
you should simply reload mlcommons@cm4mlops without checkout and clean CM cache as follows:*
35+
36+
```bash
37+
cm rm repo mlcommons@cm4mlops
38+
cm pull repo mlcommons@cm4mlops
39+
cm rm cache -f
40+
41+
```
42+
43+
## Results
44+
45+
Platform: scc104_cpu1.novalocal-reference-cpu-pytorch_v2.5.0-default_config
46+
47+
Model Precision: fp32
48+
49+
### Accuracy Results
50+
`F1`: `90.87487`, Required accuracy for closed division `>= 89.96526`
51+
52+
### Performance Results
53+
`Samples per second`: `2.35587`

open/scc104-ZJUSCT/measurements/scc104_cpu1.novalocal-reference-cpu-pytorch_v2.5.0-default_config/bert-99/offline/accuracy_console.out

Whitespace-only changes.

0 commit comments

Comments
 (0)