|
| 1 | +This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops). |
| 2 | + |
| 3 | +*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.* |
| 4 | + |
| 5 | +## Host platform |
| 6 | + |
| 7 | +* OS version: Linux-6.1.0-27-amd64-x86_64-with-glibc2.29 |
| 8 | +* CPU version: x86_64 |
| 9 | +* Python version: 3.8.10 (default, Sep 11 2024, 16:02:53) |
| 10 | +[GCC 9.4.0] |
| 11 | +* MLCommons CM version: 3.3.3 |
| 12 | + |
| 13 | +## CM Run Command |
| 14 | + |
| 15 | +See [CM installation guide](https://docs.mlcommons.org/inference/install/). |
| 16 | + |
| 17 | +```bash |
| 18 | +pip install -U cmind |
| 19 | + |
| 20 | +cm rm cache -f |
| 21 | + |
| 22 | +cm pull repo mlcommons@cm4mlops --checkout=f72ffc1c4ac088b2f78855b05b3ade8ffb2ca497 |
| 23 | + |
| 24 | +cm run script \ |
| 25 | + --tags=run-mlperf,inference,_r4.1-dev,_short,_scc24-main \ |
| 26 | + --model=sdxl \ |
| 27 | + --implementation=nvidia \ |
| 28 | + --framework=tensorrt \ |
| 29 | + --category=datacenter \ |
| 30 | + --scenario=Offline \ |
| 31 | + --execution_mode=test \ |
| 32 | + --device=cuda \ |
| 33 | + --min_query_count=528 \ |
| 34 | + --adr.nvidia-harness.use_graphs=True \ |
| 35 | + --adr.nvidia-harness.gpu_inference_streams=4 \ |
| 36 | + --adr.nvidia-harness.gpu_copy_streams=2 \ |
| 37 | + --rerun \ |
| 38 | + --clean \ |
| 39 | + --quiet |
| 40 | +``` |
| 41 | +*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts), |
| 42 | + you should simply reload mlcommons@cm4mlops without checkout and clean CM cache as follows:* |
| 43 | + |
| 44 | +```bash |
| 45 | +cm rm repo mlcommons@cm4mlops |
| 46 | +cm pull repo mlcommons@cm4mlops |
| 47 | +cm rm cache -f |
| 48 | + |
| 49 | +``` |
| 50 | + |
| 51 | +## Results |
| 52 | + |
| 53 | +Platform: f2ea47b0a016-nvidia_original-gpu-tensorrt-vdefault-scc24-main |
| 54 | + |
| 55 | +Model Precision: int8 |
| 56 | + |
| 57 | +### Accuracy Results |
| 58 | +`CLIP_SCORE`: `16.6316`, Required accuracy for closed division `>= 31.68632` and `<= 31.81332` |
| 59 | +`FID_SCORE`: `234.62921`, Required accuracy for closed division `>= 23.01086` and `<= 23.95008` |
| 60 | + |
| 61 | +### Performance Results |
| 62 | +`Samples per second`: `7.46497` |
0 commit comments