-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNN.py
executable file
·77 lines (58 loc) · 2.85 KB
/
NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import math
import tflearn
import tensorflow as tf
from functools import *
def weight(name, shape, init='he', type=None):
assert init == 'he'
std = math.sqrt(2.0 / reduce(lambda x, y: x + y, [0] + shape[:-1]))
initializer = tf.random_normal_initializer(stddev=std)
if type is not None:
var = tf.get_variable(name, shape, initializer=initializer, trainable=False)
tf.add_to_collection(type, var)
else:
var = tf.get_variable(name, shape, initializer=initializer)
tf.add_to_collection('l2', tf.nn.l2_loss(var))
return var
def embedding(name, shape):
return tf.get_variable(name, shape, initializer=tf.random_uniform_initializer(minval=-1.0 / shape[1], maxval=1.0 / shape[1]))
def bias(name, dim, type=None):
if type is not None:
var = tf.get_variable(name, dim, initializer=tf.contrib.layers.variance_scaling_initializer(mode='FAN_OUT'), trainable=False)
tf.add_to_collection(type, var)
return var
else:
return tf.get_variable(name, dim, initializer=tf.contrib.layers.variance_scaling_initializer(mode='FAN_OUT'))
def batch_norm(x, prefix, training):
with tf.variable_scope('BN'):
inputs_shape = x.get_shape()
axis = list(range(len(inputs_shape) - 1))
param_shape = inputs_shape[-1:]
beta = tf.get_variable(prefix + '_beta', param_shape, initializer=tf.constant_initializer(0.))
gamma = tf.get_variable(prefix + '_gamma', param_shape, initializer=tf.constant_initializer(1.))
batch_mean, batch_var = tf.nn.moments(x, axis)
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def update_mean_var():
ema.apply([batch_mean, batch_var])
return ema.average(batch_mean), ema.average(batch_var)
mean, var = tf.cond(training, update_mean_var, lambda : (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
return normed
def dropout(x, keep_prob, training):
return tf.cond(training, lambda: tf.nn.dropout(x, keep_prob), lambda: x)
def conv1d(x, shape, stride, prefix, suffix='', activation='relu', bn=False):
func = {'relu': tf.nn.relu, 'tanh': tf.nn.tanh, 'sigmoid': tf.nn.sigmoid, None: tf.identity}
W = weight(prefix + '_W' + str(suffix), shape)
if bn:
l = batch_norm(tf.nn.conv1d(x, W, stride, padding='SAME'), prefix)
else:
b = bias(prefix + '_b' + str(suffix), shape[-1])
l = tf.nn.conv1d(x, W, stride, padding='SAME') + b
return func[activation](l)
def fully_connected(input, num_neurons, prefix, suffix='', activation='lrelu', bn=False, training=None, type=None):
func = {'lrelu': tflearn.activations.leaky_relu, 'relu': tf.nn.relu, 'tanh': tf.nn.tanh, 'sigmoid': tf.nn.sigmoid, None: tf.identity}
W = weight(prefix + '_W' + suffix, [input.get_shape().as_list()[1], num_neurons], init='he', type=type)
if bn:
l = batch_norm(tf.matmul(input, W), prefix, training)
else:
l = tf.matmul(input, W) + bias(prefix + '_b' + suffix, num_neurons)
return func[activation](l)