-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloo.py
87 lines (62 loc) · 1.81 KB
/
loo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Reading an excel file using Python
import xlrd
import numpy as np
from scipy import optimize
import matplotlib.pyplot as plt
from itertools import combinations
# Give the location of the file
loc = ('Book1.xls')
# To open Workbook
wb = xlrd.open_workbook(loc)
sheet = wb.sheet_by_index(0)
# combinations = list(combinations([1, 2, 3, 4, 5, 6, 7, 8, 9], 4))
allCountries = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
developedCountries = [1, 2, 3, 4, 5, 6, 7, 8]
developingCountries = [9, 10, 11, 12, 13, 14]
loo_arr = []
def train(allCountries, leaveIndex):
A = []
r = []
for num in allCountries:
if num == leaveIndex: continue
list = []
for i in range(2, 6):
list.append(sheet.cell_value(num, i))
r.append(sheet.cell_value(num, 1))
A.append(list)
A = np.array(A)
w = optimize.nnls(A, r)
print("w", w)
tests = []
names = []
for num in [leaveIndex]:
list = []
for i in range(2, 6):
list.append(sheet.cell_value(num, i))
names.append(sheet.cell_value(num,0))
tests.append(list)
rc = np.matmul(tests, w[0])
loo_arr.append([sheet.cell_value(leaveIndex, 1), rc[0]])
# for index, name in enumerate(names):
# print(name, rc[index])
# print(loo_arr)
for i in range(1, 15):
train(allCountries, i)
xs = []
ys = []
print(loo_arr)
for i in range(0, 14):
xs.append(loo_arr[i][0])
ys.append(loo_arr[i][1])
print(xs)
print(ys)
# print(np.linspace(0, 1, 1000))
colors=["#0000FF", "#00FF00", "#FF0066", "#45ad65", "#879aaa", "#ababab", "#ffaabb", "#bbFFaa", "#FF6666"
, "#aaffdd", "#fffb00", "#ffbbaa", "#aa00FF", "#aaFF66", "#0066FF"]
for i in range(0, 14):
plt.scatter(xs[i], ys[i], color=colors[i])
# plt.scatter(xs, ys)
plt.plot(np.linspace(0, 0.02, 1000), np.linspace(0, 0.02, 1000))
plt.xlabel("Real Value")
plt.ylabel("Predicted Value")
plt.show()