Skip to content

Latest commit

 

History

History
451 lines (362 loc) · 14.2 KB

getting-started.md

File metadata and controls

451 lines (362 loc) · 14.2 KB
copyright lastupdated
years
2015, 2017
2017-05-30

{:new_window: target="_blank"} {:shortdesc: .shortdesc} {:screen: .screen} {:codeblock: .codeblock} {:pre: .pre} {:tip: .tip}

Getting started tutorial

{: #getting-started-with-cloudant}

In this {{site.data.keyword.cloudantfull}} getting started tutorial we'll use Python to create a {{site.data.keyword.cloudant}} database and populate that database with a simple collection of data. {:shortdesc}

Before you begin

{: #prereqs}

You'll need a Bluemix account External link icon{:new_window}, an instance of the {{site.data.keyword.cloudant}} service, and the following Python requirements:

  • Install the latest version of the Python programming language External link icon{:new_window} on your system.

    To check this, run the following command at a prompt:

    python --version

    {:pre}

    You should get a result similar to:

    Python 2.7.12
    

    {:screen}

  • Install the Python library to enable your Python applications to work with {{site.data.keyword.cloudant_short_notm}} on {{site.data.keyword.Bluemix_notm}}.

    To check that you have the client library installed successfully, run the following command at a prompt:

    pip freeze

    {:pre}

    You should get a list of all the Python modules installed on your system. Inspect the list, looking for a {{site.data.keyword.cloudant_short_notm}} entry similar to the following:

    cloudant==2.3.1
    

    {:screen}

    If the cloudant module is not installed, install it by using a command similar to the following:

    pip install cloudant==2.3.1
    

    {:pre}

Step 1: Connect to your {{site.data.keyword.cloudant_short_notm}} service instance on {{site.data.keyword.Bluemix_notm}}

  1. Run the following 'import' statements of the {{site.data.keyword.cloudant_short_notm}} Client Library components to enable your Python application to connect to the {{site.data.keyword.cloudant_short_notm}} service instance.

    from cloudant.client import Cloudant
    from cloudant.error import CloudantException
    from cloudant.result import Result, ResultByKey

    {: codeblock}

  2. Identify the {{site.data.keyword.cloudant_short_notm}} service credentials:

  3. In the {{site.data.keyword.Bluemix_notm}} console, open the dashboard for your service instance.

  4. In the left navigation, click Service credentials.

  5. Click View credentials under ACTIONS.

  6. Establish a connection to the service instance by running the following command. Replace your service credentials from the previous step:

    client = Cloudant("<username>", "<password>", url="<url>")
    client.connect()

    {: codeblock}

Step 2: Create a database

  1. Define a variable in the Python application:
databaseName = "<yourDatabaseName>"

{: codeblock} ... where <yourDatabaseName> is the name you would like to give your database.

Note: The database name must begin with a letter and can include only lowercase characters (a-z), numerals (0-9), and any of the following characters _, $, (, ), +, -, and /.

  1. Create the database:
myDatabase = client.create_database(databaseName)

{: codeblock}

  1. Confirm the database was created successfully:
if myDatabase.exists():
    print "'{0}' successfully created.\n".format(databaseName)

{: codeblock}

Step 3: Store a small collection of data as documents within the database

  1. Define a collection of data:
sampleData = [
    [1, "one", "boiling", 100],
    [2, "two", "hot", 40],
    [3, "three", "warm", 20],
    [4, "four", "cold", 10],
    [5, "five", "freezing", 0]
  ]

{: codeblock}

  1. Use Python code to 'step' through the data and convert it into JSON documents. Each document is stored in the database:
# Create documents using the sample data.
# Go through each row in the array
for document in sampleData:
  # Retrieve the fields in each row.
  number = document[0]
  name = document[1]
  description = document[2]
  temperature = document[3]

  # Create a JSON document that represents
  # all the data in the row.
  jsonDocument = {
      "numberField": number,
      "nameField": name,
      "descriptionField": description,
      "temperatureField": temperature
  }

  # Create a document using the Database API.
  newDocument = myDatabase.create_document(jsonDocument)

  # Check that the document exists in the database.
  if newDocument.exists():
      print "Document '{0}' successfully created.".format(number)

{: codeblock}

Notice that we check that each document was successfully created. {: tip}

Step 4: Retrieving data through queries

At this point, a small collection of data has been stored as documents within the database. You can do a minimal or full retrieval of that data from the database. A minimal retrieval obtains the basic data about a document. A full retrieval also includes the data within a document.

  • To perform a minimal retrieval:

    1. First, request a list of all documents within the database.
    result_collection = Result(myDatabase.all_docs)

    {: codeblock}

    This list is returned as an array.

    1. Display the content of an element in the array.
    print "Retrieved minimal document:\n{0}\n".format(result_collection[0])

    {: codeblock}

    The result is similar to the following example:

    [{u'value': {u'rev': u'1-106e76a2612ea13468b2f243ea75c9b1'}, u'id': u'14be111aac74534cf8d390eaa57db888', u'key': u'14be111aac74534cf8d390eaa57db888'}]
    

    {:screen}

    Note: The u' prefix is simply an indication that Python is displaying a Unicode string.

    If we tidy the appearance a little, we can see that the minimal document details we got back are equivalent to this:

    [
        {
            "value": {
                "rev": "1-106e76a2612ea13468b2f243ea75c9b1"
            },
            "id": "14be111aac74534cf8d390eaa57db888",
            "key": "14be111aac74534cf8d390eaa57db888"
        }
    ]

    {:screen}

    Note: The nature of NoSQL databases, such as {{site.data.keyword.cloudant_short_notm}}, means that simple notions such as the first document stored in a database is always the first one returned in a list of results, do not necessarily apply.

  • To perform a full retrieval, request a list of all documents within the database, and specify that the document content must also be returned by providing the include_docs option.

    result_collection = Result(myDatabase.all_docs, include_docs=True)
    print "Retrieved full document:\n{0}\n".format(result_collection[0])

    {: codeblock}

    The result is similar to the following example:

    [{u'value': {u'rev': u'1-7130413a8c7c5f1de5528fe4d373045c'}, u'id': u'0cfc7d902f613d5fdb7b7818e262353b', u'key': u'0cfc7d902f613d5fdb7b7818e262353b', u'doc': {u'temperatureField': 40, u'descriptionField': u'hot', u'numberField': 2, u'nameField': u'two', u'_id': u'0cfc7d902f613d5fdb7b7818e262353b', u'_rev': u'1-7130413a8c7c5f1de5528fe4d373045c'}}]
    

    {: screen}

    If we tidy the appearance a little, we can see that the full document details we got back are equivalent to this:

    [
      {
        "value": {
          "rev": "1-7130413a8c7c5f1de5528fe4d373045c
        },
        "id": "0cfc7d902f613d5fdb7b7818e262353b",
        "key": "0cfc7d902f613d5fdb7b7818e262353b",
        "doc": {
          "temperatureField": 40,
          "descriptionField": "hot",
          "numberField": 2,
          "nameField": "two",
          "_id": "0cfc7d902f613d5fdb7b7818e262353b",
          "_rev": "1-7130413a8c7c5f1de5528fe4d373045c"
        }
      }
    ]

    {:screen}

Step 5: Retrieving data through the {{site.data.keyword.cloudant_short_notm}} API endpoint

You can also request a list of all documents and their contents by invoking the Cloudant /_all_docs endpoint.

  1. Identify the endpoint to contact, and any parameters to supply along with the call:
end_point = '{0}/{1}'.format("<url>", databaseName + "/_all_docs")
params = {'include_docs': 'true'}

{: codeblock} ... where <url> is the URL value from the service credentials you found in Step 1.

  1. Send the request to the service instance, then display the results:
response = client.r_session.get(end_point, params=params)
print "{0}\n".format(response.json())

{: codeblock}

The result is similar to the following abbreviated example:

{u'rows': [{u'value': {u'rev': u'1-6d8cb5905316bf3dbe4075f30daa9f59'}, u'id': u'0532feb6fd6180d79b842d871316c444', u'key': u'0532feb6fd6180d79b842d871316c444', u'doc': {u'temperatureField': 20, u'descriptionField': u'warm', u'numberField': 3, u'nameField': u'three', u'_id': u'0532feb6fd6180d79b842d871316c444', u'_rev': u'1-6d8cb5905316bf3dbe4075f30daa9f59'}}, ... , {u'value': {u'rev': u'1-3f61736fa96473d358365ce1665e3d97'}, u'id': u'db396f77bbe12a567b09177b4accbdbc', u'key': u'db396f77bbe12a567b09177b4accbdbc', u'doc': {u'temperatureField': 0, u'descriptionField': u'freezing', u'numberField': 5, u'nameField': u'five', u'_id': u'db396f77bbe12a567b09177b4accbdbc', u'_rev': u'1-3f61736fa96473d358365ce1665e3d97'}}], u'total_rows': 5, u'offset': 0}

{:screen}

We can tidy the appearance a little, and see that the abbreviated details we got back are similar to this:

{
    "rows": [
        {
            "value": {
              "rev": "1-6d8cb5905316bf3dbe4075f30daa9f59"
            },
            "id": "0532feb6fd6180d79b842d871316c444",
            "key": "0532feb6fd6180d79b842d871316c444",
            "doc": {
                "temperatureField": 20,
                "descriptionField": "warm",
                "numberField": 3,
                "nameField": "three",
                "_id": "0532feb6fd6180d79b842d871316c444",
                "_rev": "1-6d8cb5905316bf3dbe4075f30daa9f59"
            }
        },
        ...
        {
            "value":
            {
              "rev": "1-6d8cb5905316bf3dbe4075f30daa9f59"
            },
            "id": "db396f77bbe12a567b09177b4accbdbc",
            "key": "db396f77bbe12a567b09177b4accbdbc",
            "doc": {
                "temperatureField": 0,
                "descriptionField": "freezing",
                "numberField": 5,
                "nameField": "five",
                "_id": "db396f77bbe12a567b09177b4accbdbc",
                "_rev": "1-6d8cb5905316bf3dbe4075f30daa9f59"
            }
        }
    ],
    "total_rows": 5,
    "offset": 0
}

{:screen}

Step 6: Delete the database

When you are finished with the database, it can be deleted.

try :
    client.delete_database(databaseName)
except CloudantException:
    print "There was a problem deleting '{0}'.\n".format(databaseName)
else:
    print "'{0}' successfully deleted.\n".format(databaseName)

{: codeblock}

We have included some basic error handling to illustrate how problems might be caught and addressed.

Step 7: Close the connection to the service instance

The final step is to disconnect the Python client application from the service instance:

client.disconnect()

{: codeblock}

Next steps

For more information on all the {{site.data.keyword.cloudant_short_notm}} offerings, see the main {{site.data.keyword.cloudant_short_notm}} External link icon{:new_window} site.

For more details and tutorials on {{site.data.keyword.cloudant_short_notm}} concepts, tasks and techniques, see the {{site.data.keyword.cloudant_short_notm}} documentation.

Appendix: Complete Python code listing

The complete Python code listing is as follows. Remember to replace the <username>, <password>, and <url> values with your service credentials. Similarly, replace the <yourDatabaseName> value with the name for your database.

from cloudant.client import Cloudant
from cloudant.error import CloudantException
from cloudant.result import Result, ResultByKey

client = Cloudant("<username>", "<password>", url="<url>")
client.connect()

databaseName = "<yourDatabaseName>"

myDatabase = client.create_database(databaseName)

if myDatabase.exists():
    print "'{0}' successfully created.\n".format(databaseName)

sampleData = [
    [1, "one", "boiling", 100],
    [2, "two", "hot", 40],
    [3, "three", "warm", 20],
    [4, "four", "cold", 10],
    [5, "five", "freezing", 0]
]

# Create documents using the sample data.
# Go through each row in the array
for document in sampleData:
    # Retrieve the fields in each row.
    number = document[0]
    name = document[1]
    description = document[2]
    temperature = document[3]

    # Create a JSON document that represents
    # all the data in the row.
    jsonDocument = {
        "numberField": number,
        "nameField": name,
        "descriptionField": description,
        "temperatureField": temperature
    }

    # Create a document using the Database API.
    newDocument = myDatabase.create_document(jsonDocument)

    # Check that the document exists in the database.
    if newDocument.exists():
        print "Document '{0}' successfully created.".format(number)

result_collection = Result(myDatabase.all_docs)

print "Retrieved minimal document:\n{0}\n".format(result_collection[0])

result_collection = Result(myDatabase.all_docs, include_docs=True)
print "Retrieved full document:\n{0}\n".format(result_collection[0])

end_point = '{0}/{1}'.format("<url>", databaseName + "/_all_docs")
params = {'include_docs': 'true'}
response = client.r_session.get(end_point, params=params)
print "{0}\n".format(response.json())


try :
    client.delete_database(databaseName)
except CloudantException:
    print "There was a problem deleting '{0}'.\n".format(databaseName)
else:
    print "'{0}' successfully deleted.\n".format(databaseName)

client.disconnect()

{: codeblock}