|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Prepare" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [ |
| 15 | + { |
| 16 | + "ename": "ImportError", |
| 17 | + "evalue": "cannot import name 'plot_data_and_posterior' from 'bayes_window.visualization' (/home/m/mmy/bayes-window/bayes_window/visualization.py)", |
| 18 | + "output_type": "error", |
| 19 | + "traceback": [ |
| 20 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 21 | + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", |
| 22 | + "\u001b[0;32m<ipython-input-1-f066f5cd42ab>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mbulwark\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchecks\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mck\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbayes_window\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenerative_models\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgenerate_fake_spikes\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mbayes_window\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvisualization\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mfake_spikes_explore\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mplot_data_and_posterior\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbayes_window\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmodels\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbayes_window\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfitting\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mfit_numpyro\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 23 | + "\u001b[0;31mImportError\u001b[0m: cannot import name 'plot_data_and_posterior' from 'bayes_window.visualization' (/home/m/mmy/bayes-window/bayes_window/visualization.py)" |
| 24 | + ] |
| 25 | + } |
| 26 | + ], |
| 27 | + "source": [ |
| 28 | + "#!pip install -e ..\n", |
| 29 | + "from altair.vegalite.v4.api import FacetChart, Chart, LayerChart\n", |
| 30 | + "from sklearn.preprocessing import LabelEncoder\n", |
| 31 | + "import bulwark.checks as ck\n", |
| 32 | + "from bayes_window.generative_models import generate_fake_spikes\n", |
| 33 | + "from bayes_window.visualization import fake_spikes_explore, plot_data_and_posterior\n", |
| 34 | + "from bayes_window import models\n", |
| 35 | + "from bayes_window.fitting import fit_numpyro\n", |
| 36 | + "from bayes_window.utils import add_data_to_posterior\n", |
| 37 | + "\n", |
| 38 | + "trans = LabelEncoder().fit_transform\n", |
| 39 | + "\n" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "markdown", |
| 44 | + "metadata": {}, |
| 45 | + "source": [ |
| 46 | + "# Make some data\n" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "code", |
| 51 | + "execution_count": null, |
| 52 | + "metadata": {}, |
| 53 | + "outputs": [], |
| 54 | + "source": [ |
| 55 | + "df, df_monster, index_cols, firing_rates = generate_fake_spikes(n_trials=2,\n", |
| 56 | + " n_neurons=8,\n", |
| 57 | + " n_mice=4,\n", |
| 58 | + " dur=7, )" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": null, |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [], |
| 66 | + "source": [ |
| 67 | + "import numpy as np\n", |
| 68 | + "df['log_isi']=np.log10(df['isi'])" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": null, |
| 74 | + "metadata": { |
| 75 | + "scrolled": false |
| 76 | + }, |
| 77 | + "outputs": [], |
| 78 | + "source": [ |
| 79 | + "import altair as alt\n", |
| 80 | + "from bayes_window import visualization,utils\n", |
| 81 | + "from importlib import reload\n", |
| 82 | + "reload(visualization)\n", |
| 83 | + "reload(utils)\n", |
| 84 | + "y='log_isi'\n", |
| 85 | + "df['neuron']=df['neuron'].astype(int)\n", |
| 86 | + "ddf, dy = utils.make_fold_change(df,\n", |
| 87 | + " y=y,\n", |
| 88 | + " index_cols=('stim', 'mouse_code', 'neuron'),\n", |
| 89 | + " condition_name='stim',\n", |
| 90 | + " do_take_mean=True)\n", |
| 91 | + "\n", |
| 92 | + "visualization.plot_data(x='neuron',y=dy, color='mouse_code',add_box=True,df=ddf)" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "markdown", |
| 97 | + "metadata": {}, |
| 98 | + "source": [ |
| 99 | + "# Estimate model" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": null, |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [], |
| 107 | + "source": [ |
| 108 | + "#y = list(set(df.columns) - set(index_cols))[0]\n", |
| 109 | + "trace = fit_numpyro(y=df[y].values,\n", |
| 110 | + " stim_on=(df['stim']).astype(int).values,\n", |
| 111 | + " treat=trans(df['neuron']),\n", |
| 112 | + " subject=trans(df['mouse']),\n", |
| 113 | + " progress_bar=True,\n", |
| 114 | + " model=models.model_hier_normal_stim,\n", |
| 115 | + " n_draws=100, num_chains=1, )" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "markdown", |
| 120 | + "metadata": {}, |
| 121 | + "source": [ |
| 122 | + "# Add data back" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": null, |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [], |
| 130 | + "source": [ |
| 131 | + "reload(utils)\n", |
| 132 | + "df_both = utils.add_data_to_posterior(df,\n", |
| 133 | + " trace=trace,\n", |
| 134 | + " y=y,\n", |
| 135 | + " index_cols=['neuron', 'stim', 'mouse_code', ],\n", |
| 136 | + " condition_name='stim',\n", |
| 137 | + " b_name='b_stim_per_condition', # for posterior\n", |
| 138 | + " group_name='neuron' # for posterior\n", |
| 139 | + " )" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "markdown", |
| 144 | + "metadata": {}, |
| 145 | + "source": [ |
| 146 | + "# Plot data and posterior" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "code", |
| 151 | + "execution_count": null, |
| 152 | + "metadata": { |
| 153 | + "scrolled": false |
| 154 | + }, |
| 155 | + "outputs": [], |
| 156 | + "source": [ |
| 157 | + "from bayes_window.workflow import BayesWindow\n", |
| 158 | + "#BayesWindow.plot_posteriors_slopes(df_both, y=f'{y} diff', x='neuron',color='mouse_code',title=y,hold_for_facet=False,add_box=False)\n", |
| 159 | + "\n", |
| 160 | + "\n", |
| 161 | + "chart_d = visualization.plot_data(df=df_both,x='neuron', y=f'{y} diff',)\n", |
| 162 | + "chart_d.display()\n", |
| 163 | + "\n", |
| 164 | + "chart_p = visualization.plot_posterior(df=df_both, title=f'd_{y}', x='neuron',)\n", |
| 165 | + "chart_p.display()" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "code", |
| 170 | + "execution_count": null, |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [], |
| 173 | + "source": [ |
| 174 | + "(chart_d+chart_p).display()" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": null, |
| 180 | + "metadata": {}, |
| 181 | + "outputs": [], |
| 182 | + "source": [ |
| 183 | + "(chart_d+chart_p).facet(column='neuron')" |
| 184 | + ] |
| 185 | + } |
| 186 | + ], |
| 187 | + "metadata": { |
| 188 | + "kernelspec": { |
| 189 | + "display_name": "PyCharm (jup)", |
| 190 | + "language": "python", |
| 191 | + "name": "pycharm-d5912792" |
| 192 | + }, |
| 193 | + "language_info": { |
| 194 | + "codemirror_mode": { |
| 195 | + "name": "ipython", |
| 196 | + "version": 3 |
| 197 | + }, |
| 198 | + "file_extension": ".py", |
| 199 | + "mimetype": "text/x-python", |
| 200 | + "name": "python", |
| 201 | + "nbconvert_exporter": "python", |
| 202 | + "pygments_lexer": "ipython3", |
| 203 | + "version": "3.8.5" |
| 204 | + } |
| 205 | + }, |
| 206 | + "nbformat": 4, |
| 207 | + "nbformat_minor": 4 |
| 208 | +} |
0 commit comments