forked from nipy/nipype
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
1752 lines (1601 loc) · 61.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""The freesurfer module provides basic functions for interfacing with
freesurfer tools.
"""
import os
from ...utils.filemanip import fname_presuffix, split_filename
from ..base import (
TraitedSpec,
File,
traits,
InputMultiPath,
OutputMultiPath,
Directory,
isdefined,
)
from .base import FSCommand, FSTraitedSpec
from .utils import copy2subjdir
__docformat__ = "restructuredtext"
class MRISPreprocInputSpec(FSTraitedSpec):
out_file = File(argstr="--out %s", genfile=True, desc="output filename")
target = traits.Str(
argstr="--target %s", mandatory=True, desc="target subject name"
)
hemi = traits.Enum(
"lh",
"rh",
argstr="--hemi %s",
mandatory=True,
desc="hemisphere for source and target",
)
surf_measure = traits.Str(
argstr="--meas %s",
xor=("surf_measure", "surf_measure_file", "surf_area"),
desc="Use subject/surf/hemi.surf_measure as input",
)
surf_area = traits.Str(
argstr="--area %s",
xor=("surf_measure", "surf_measure_file", "surf_area"),
desc="Extract vertex area from subject/surf/hemi.surfname to use as input.",
)
subjects = traits.List(
argstr="--s %s...",
xor=("subjects", "fsgd_file", "subject_file"),
desc="subjects from who measures are calculated",
)
fsgd_file = File(
exists=True,
argstr="--fsgd %s",
xor=("subjects", "fsgd_file", "subject_file"),
desc="specify subjects using fsgd file",
)
subject_file = File(
exists=True,
argstr="--f %s",
xor=("subjects", "fsgd_file", "subject_file"),
desc="file specifying subjects separated by white space",
)
surf_measure_file = InputMultiPath(
File(exists=True),
argstr="--is %s...",
xor=("surf_measure", "surf_measure_file", "surf_area"),
desc="file alternative to surfmeas, still requires list of subjects",
)
source_format = traits.Str(argstr="--srcfmt %s", desc="source format")
surf_dir = traits.Str(
argstr="--surfdir %s", desc="alternative directory (instead of surf)"
)
vol_measure_file = InputMultiPath(
traits.Tuple(File(exists=True), File(exists=True)),
argstr="--iv %s %s...",
desc="list of volume measure and reg file tuples",
)
proj_frac = traits.Float(
argstr="--projfrac %s", desc="projection fraction for vol2surf"
)
fwhm = traits.Float(
argstr="--fwhm %f",
xor=["num_iters"],
desc="smooth by fwhm mm on the target surface",
)
num_iters = traits.Int(
argstr="--niters %d",
xor=["fwhm"],
desc="niters : smooth by niters on the target surface",
)
fwhm_source = traits.Float(
argstr="--fwhm-src %f",
xor=["num_iters_source"],
desc="smooth by fwhm mm on the source surface",
)
num_iters_source = traits.Int(
argstr="--niterssrc %d",
xor=["fwhm_source"],
desc="niters : smooth by niters on the source surface",
)
smooth_cortex_only = traits.Bool(
argstr="--smooth-cortex-only",
desc="only smooth cortex (ie, exclude medial wall)",
)
class MRISPreprocOutputSpec(TraitedSpec):
out_file = File(desc="preprocessed output file")
class MRISPreproc(FSCommand):
"""Use FreeSurfer mris_preproc to prepare a group of contrasts for
a second level analysis
Examples
--------
>>> preproc = MRISPreproc()
>>> preproc.inputs.target = 'fsaverage'
>>> preproc.inputs.hemi = 'lh'
>>> preproc.inputs.vol_measure_file = [('cont1.nii', 'register.dat'), \
('cont1a.nii', 'register.dat')]
>>> preproc.inputs.out_file = 'concatenated_file.mgz'
>>> preproc.cmdline
'mris_preproc --hemi lh --out concatenated_file.mgz --target fsaverage --iv cont1.nii register.dat --iv cont1a.nii register.dat'
"""
_cmd = "mris_preproc"
input_spec = MRISPreprocInputSpec
output_spec = MRISPreprocOutputSpec
def _list_outputs(self):
outputs = self.output_spec().get()
outfile = self.inputs.out_file
outputs["out_file"] = outfile
if not isdefined(outfile):
outputs["out_file"] = os.path.join(
os.getcwd(), f"concat_{self.inputs.hemi}_{self.inputs.target}.mgz"
)
return outputs
def _gen_filename(self, name):
if name == "out_file":
return self._list_outputs()[name]
return None
class MRISPreprocReconAllInputSpec(MRISPreprocInputSpec):
surf_measure_file = File(
exists=True,
argstr="--meas %s",
xor=("surf_measure", "surf_measure_file", "surf_area"),
desc="file necessary for surfmeas",
)
surfreg_files = InputMultiPath(
File(exists=True),
argstr="--surfreg %s",
requires=["lh_surfreg_target", "rh_surfreg_target"],
desc="lh and rh input surface registration files",
)
lh_surfreg_target = File(
desc="Implicit target surface registration file", requires=["surfreg_files"]
)
rh_surfreg_target = File(
desc="Implicit target surface registration file", requires=["surfreg_files"]
)
subject_id = traits.String(
"subject_id",
argstr="--s %s",
usedefault=True,
xor=("subjects", "fsgd_file", "subject_file", "subject_id"),
desc="subject from whom measures are calculated",
)
copy_inputs = traits.Bool(
desc="If running as a node, set this to True "
"this will copy some implicit inputs to the "
"node directory."
)
class MRISPreprocReconAll(MRISPreproc):
"""Extends MRISPreproc to allow it to be used in a recon-all workflow
Examples
--------
>>> preproc = MRISPreprocReconAll()
>>> preproc.inputs.target = 'fsaverage'
>>> preproc.inputs.hemi = 'lh'
>>> preproc.inputs.vol_measure_file = [('cont1.nii', 'register.dat'), \
('cont1a.nii', 'register.dat')]
>>> preproc.inputs.out_file = 'concatenated_file.mgz'
>>> preproc.cmdline
'mris_preproc --hemi lh --out concatenated_file.mgz --s subject_id --target fsaverage --iv cont1.nii register.dat --iv cont1a.nii register.dat'
"""
input_spec = MRISPreprocReconAllInputSpec
def run(self, **inputs):
if self.inputs.copy_inputs:
self.inputs.subjects_dir = os.getcwd()
if "subjects_dir" in inputs:
inputs["subjects_dir"] = self.inputs.subjects_dir
if isdefined(self.inputs.surf_dir):
folder = self.inputs.surf_dir
else:
folder = "surf"
if isdefined(self.inputs.surfreg_files):
for surfreg in self.inputs.surfreg_files:
basename = os.path.basename(surfreg)
copy2subjdir(self, surfreg, folder, basename)
if basename.startswith("lh."):
copy2subjdir(
self,
self.inputs.lh_surfreg_target,
folder,
basename,
subject_id=self.inputs.target,
)
else:
copy2subjdir(
self,
self.inputs.rh_surfreg_target,
folder,
basename,
subject_id=self.inputs.target,
)
if isdefined(self.inputs.surf_measure_file):
copy2subjdir(self, self.inputs.surf_measure_file, folder)
return super().run(**inputs)
def _format_arg(self, name, spec, value):
# mris_preproc looks for these files in the surf dir
if name == "surfreg_files":
basename = os.path.basename(value[0])
return spec.argstr % basename.lstrip("rh.").lstrip("lh.")
if name == "surf_measure_file":
basename = os.path.basename(value)
return spec.argstr % basename.lstrip("rh.").lstrip("lh.")
return super()._format_arg(name, spec, value)
class GLMFitInputSpec(FSTraitedSpec):
glm_dir = traits.Str(argstr="--glmdir %s", desc="save outputs to dir", genfile=True)
in_file = File(
desc="input 4D file", argstr="--y %s", mandatory=True, copyfile=False
)
_design_xor = ("fsgd", "design", "one_sample")
fsgd = traits.Tuple(
File(exists=True),
traits.Enum("doss", "dods"),
argstr="--fsgd %s %s",
xor=_design_xor,
desc="freesurfer descriptor file",
)
design = File(
exists=True, argstr="--X %s", xor=_design_xor, desc="design matrix file"
)
contrast = InputMultiPath(
File(exists=True), argstr="--C %s...", desc="contrast file"
)
one_sample = traits.Bool(
argstr="--osgm",
xor=("one_sample", "fsgd", "design", "contrast"),
desc="construct X and C as a one-sample group mean",
)
no_contrast_ok = traits.Bool(
argstr="--no-contrasts-ok", desc="do not fail if no contrasts specified"
)
per_voxel_reg = InputMultiPath(
File(exists=True), argstr="--pvr %s...", desc="per-voxel regressors"
)
self_reg = traits.Tuple(
traits.Int,
traits.Int,
traits.Int,
argstr="--selfreg %d %d %d",
desc="self-regressor from index col row slice",
)
weighted_ls = File(
exists=True,
argstr="--wls %s",
xor=("weight_file", "weight_inv", "weight_sqrt"),
desc="weighted least squares",
)
fixed_fx_var = File(
exists=True, argstr="--yffxvar %s", desc="for fixed effects analysis"
)
fixed_fx_dof = traits.Int(
argstr="--ffxdof %d",
xor=["fixed_fx_dof_file"],
desc="dof for fixed effects analysis",
)
fixed_fx_dof_file = File(
argstr="--ffxdofdat %d",
xor=["fixed_fx_dof"],
desc="text file with dof for fixed effects analysis",
)
weight_file = File(
exists=True, xor=["weighted_ls"], desc="weight for each input at each voxel"
)
weight_inv = traits.Bool(
argstr="--w-inv", desc="invert weights", xor=["weighted_ls"]
)
weight_sqrt = traits.Bool(
argstr="--w-sqrt", desc="sqrt of weights", xor=["weighted_ls"]
)
fwhm = traits.Range(low=0.0, argstr="--fwhm %f", desc="smooth input by fwhm")
var_fwhm = traits.Range(
low=0.0, argstr="--var-fwhm %f", desc="smooth variance by fwhm"
)
no_mask_smooth = traits.Bool(
argstr="--no-mask-smooth", desc="do not mask when smoothing"
)
no_est_fwhm = traits.Bool(
argstr="--no-est-fwhm", desc="turn off FWHM output estimation"
)
mask_file = File(exists=True, argstr="--mask %s", desc="binary mask")
label_file = File(
exists=True,
argstr="--label %s",
xor=["cortex"],
desc="use label as mask, surfaces only",
)
cortex = traits.Bool(
argstr="--cortex",
xor=["label_file"],
desc="use subjects ?h.cortex.label as label",
)
invert_mask = traits.Bool(argstr="--mask-inv", desc="invert mask")
prune = traits.Bool(
argstr="--prune",
desc="remove voxels that do not have a non-zero value at each frame (def)",
)
no_prune = traits.Bool(
argstr="--no-prune", xor=["prunethresh"], desc="do not prune"
)
prune_thresh = traits.Float(
argstr="--prune_thr %f",
xor=["noprune"],
desc="prune threshold. Default is FLT_MIN",
)
compute_log_y = traits.Bool(
argstr="--logy", desc="compute natural log of y prior to analysis"
)
save_estimate = traits.Bool(
argstr="--yhat-save", desc="save signal estimate (yhat)"
)
save_residual = traits.Bool(argstr="--eres-save", desc="save residual error (eres)")
save_res_corr_mtx = traits.Bool(
argstr="--eres-scm",
desc="save residual error spatial correlation matrix (eres.scm). Big!",
)
surf = traits.Bool(
argstr="--surf %s %s %s",
requires=["subject_id", "hemi"],
desc="analysis is on a surface mesh",
)
subject_id = traits.Str(desc="subject id for surface geometry")
hemi = traits.Enum("lh", "rh", desc="surface hemisphere")
surf_geo = traits.Str(
"white", usedefault=True, desc="surface geometry name (e.g. white, pial)"
)
simulation = traits.Tuple(
traits.Enum("perm", "mc-full", "mc-z"),
traits.Int(min=1),
traits.Float,
traits.Str,
argstr="--sim %s %d %f %s",
desc="nulltype nsim thresh csdbasename",
)
sim_sign = traits.Enum(
"abs", "pos", "neg", argstr="--sim-sign %s", desc="abs, pos, or neg"
)
uniform = traits.Tuple(
traits.Float,
traits.Float,
argstr="--uniform %f %f",
desc="use uniform distribution instead of gaussian",
)
pca = traits.Bool(argstr="--pca", desc="perform pca/svd analysis on residual")
calc_AR1 = traits.Bool(
argstr="--tar1", desc="compute and save temporal AR1 of residual"
)
save_cond = traits.Bool(
argstr="--save-cond", desc="flag to save design matrix condition at each voxel"
)
vox_dump = traits.Tuple(
traits.Int,
traits.Int,
traits.Int,
argstr="--voxdump %d %d %d",
desc="dump voxel GLM and exit",
)
seed = traits.Int(argstr="--seed %d", desc="used for synthesizing noise")
synth = traits.Bool(argstr="--synth", desc="replace input with gaussian")
resynth_test = traits.Int(argstr="--resynthtest %d", desc="test GLM by resynthsis")
profile = traits.Int(argstr="--profile %d", desc="niters : test speed")
mrtm1 = traits.Tuple(
File(exists=True),
File(exists=True),
argstr="--mrtm1 %s %s",
desc="RefTac TimeSec : perform MRTM1 kinetic modeling",
)
mrtm2 = traits.Tuple(
File(exists=True),
File(exists=True),
traits.Float,
argstr="--mrtm2 %s %s %f",
desc="RefTac TimeSec k2prime : perform MRTM2 kinetic modeling",
)
logan = traits.Tuple(
File(exists=True),
File(exists=True),
traits.Float,
argstr="--logan %s %s %f",
desc="RefTac TimeSec tstar : perform Logan kinetic modeling",
)
bp_clip_neg = traits.Bool(
argstr="--bp-clip-neg",
desc="set negative BP voxels to zero",
)
bp_clip_max = traits.Float(
argstr="--bp-clip-max %f",
desc="set BP voxels above max to max",
)
force_perm = traits.Bool(
argstr="--perm-force",
desc="force perumtation test, even when design matrix is not orthog",
)
diag = traits.Int(argstr="--diag %d", desc="Gdiag_no : set diagnostic level")
diag_cluster = traits.Bool(
argstr="--diag-cluster", desc="save sig volume and exit from first sim loop"
)
debug = traits.Bool(argstr="--debug", desc="turn on debugging")
check_opts = traits.Bool(
argstr="--checkopts", desc="don't run anything, just check options and exit"
)
allow_repeated_subjects = traits.Bool(
argstr="--allowsubjrep",
desc="allow subject names to repeat in the fsgd file (must appear before --fsgd",
)
allow_ill_cond = traits.Bool(
argstr="--illcond", desc="allow ill-conditioned design matrices"
)
sim_done_file = File(
argstr="--sim-done %s", desc="create file when simulation finished"
)
_ext_xor = ['nii', 'nii_gz']
nii = traits.Bool(argstr='--nii', desc='save outputs as nii', xor=_ext_xor)
nii_gz = traits.Bool(argstr='--nii.gz', desc='save outputs as nii.gz', xor=_ext_xor)
class GLMFitOutputSpec(TraitedSpec):
glm_dir = Directory(exists=True, desc="output directory")
beta_file = File(exists=True, desc="map of regression coefficients")
error_file = File(desc="map of residual error")
error_var_file = File(desc="map of residual error variance")
error_stddev_file = File(desc="map of residual error standard deviation")
estimate_file = File(desc="map of the estimated Y values")
mask_file = File(desc="map of the mask used in the analysis")
fwhm_file = File(desc="text file with estimated smoothness")
dof_file = File(desc="text file with effective degrees-of-freedom for the analysis")
gamma_file = OutputMultiPath(desc="map of contrast of regression coefficients")
gamma_var_file = OutputMultiPath(desc="map of regression contrast variance")
sig_file = OutputMultiPath(desc="map of F-test significance (in -log10p)")
ftest_file = OutputMultiPath(desc="map of test statistic values")
spatial_eigenvectors = File(desc="map of spatial eigenvectors from residual PCA")
frame_eigenvectors = File(desc="matrix of frame eigenvectors from residual PCA")
singular_values = File(desc="matrix singular values from residual PCA")
svd_stats_file = File(desc="text file summarizing the residual PCA")
k2p_file = File(desc="estimate of k2p parameter")
bp_file = File(desc="Binding potential estimates")
class GLMFit(FSCommand):
"""Use FreeSurfer's mri_glmfit to specify and estimate a general linear model.
Examples
--------
>>> glmfit = GLMFit()
>>> glmfit.inputs.in_file = 'functional.nii'
>>> glmfit.inputs.one_sample = True
>>> glmfit.cmdline == 'mri_glmfit --glmdir %s --y functional.nii --osgm'%os.getcwd()
True
"""
_cmd = "mri_glmfit"
input_spec = GLMFitInputSpec
output_spec = GLMFitOutputSpec
def _format_arg(self, name, spec, value):
if name == "surf":
_si = self.inputs
return spec.argstr % (_si.subject_id, _si.hemi, _si.surf_geo)
return super()._format_arg(name, spec, value)
def _list_outputs(self):
outputs = self.output_spec().get()
# Get the top-level output directory
if not isdefined(self.inputs.glm_dir):
glmdir = os.getcwd()
else:
glmdir = os.path.abspath(self.inputs.glm_dir)
outputs["glm_dir"] = glmdir
if isdefined(self.inputs.nii_gz):
ext = 'nii.gz'
elif isdefined(self.inputs.nii):
ext = 'nii'
else:
ext = 'mgh'
# Assign the output files that always get created
outputs["beta_file"] = os.path.join(glmdir, f"beta.{ext}")
outputs["error_var_file"] = os.path.join(glmdir, f"rvar.{ext}")
outputs["error_stddev_file"] = os.path.join(glmdir, f"rstd.{ext}")
outputs["mask_file"] = os.path.join(glmdir, f"mask.{ext}")
outputs["fwhm_file"] = os.path.join(glmdir, "fwhm.dat")
outputs["dof_file"] = os.path.join(glmdir, "dof.dat")
# Assign the conditional outputs
if self.inputs.save_residual:
outputs["error_file"] = os.path.join(glmdir, f"eres.{ext}")
if self.inputs.save_estimate:
outputs["estimate_file"] = os.path.join(glmdir, f"yhat.{ext}")
if any((self.inputs.mrtm1, self.inputs.mrtm2, self.inputs.logan)):
outputs["bp_file"] = os.path.join(glmdir, f"bp.{ext}")
if self.inputs.mrtm1:
outputs["k2p_file"] = os.path.join(glmdir, "k2prime.dat")
# Get the contrast directory name(s)
contrasts = []
if isdefined(self.inputs.contrast):
for c in self.inputs.contrast:
if split_filename(c)[2] in [".mat", ".dat", ".mtx", ".con"]:
contrasts.append(split_filename(c)[1])
else:
contrasts.append(os.path.split(c)[1])
elif isdefined(self.inputs.one_sample) and self.inputs.one_sample:
contrasts = ["osgm"]
# Add in the contrast images
outputs["sig_file"] = [os.path.join(glmdir, c, f"sig.{ext}") for c in contrasts]
outputs["ftest_file"] = [os.path.join(glmdir, c, f"F.{ext}") for c in contrasts]
outputs["gamma_file"] = [
os.path.join(glmdir, c, f"gamma.{ext}") for c in contrasts
]
outputs["gamma_var_file"] = [
os.path.join(glmdir, c, f"gammavar.{ext}") for c in contrasts
]
# Add in the PCA results, if relevant
if isdefined(self.inputs.pca) and self.inputs.pca:
pcadir = os.path.join(glmdir, "pca-eres")
outputs["spatial_eigenvectors"] = os.path.join(pcadir, f"v.{ext}")
outputs["frame_eigenvectors"] = os.path.join(pcadir, "u.mtx")
outputs["singluar_values"] = os.path.join(pcadir, "sdiag.mat")
outputs["svd_stats_file"] = os.path.join(pcadir, "stats.dat")
return outputs
def _gen_filename(self, name):
if name == "glm_dir":
return os.getcwd()
return None
class OneSampleTTest(GLMFit):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.inputs.one_sample = True
class BinarizeInputSpec(FSTraitedSpec):
in_file = File(
exists=True,
argstr="--i %s",
mandatory=True,
copyfile=False,
desc="input volume",
)
min = traits.Float(argstr="--min %f", xor=["wm_ven_csf"], desc="min thresh")
max = traits.Float(argstr="--max %f", xor=["wm_ven_csf"], desc="max thresh")
rmin = traits.Float(argstr="--rmin %f", desc="compute min based on rmin*globalmean")
rmax = traits.Float(argstr="--rmax %f", desc="compute max based on rmax*globalmean")
match = traits.List(
traits.Int, argstr="--match %d...", desc="match instead of threshold"
)
wm = traits.Bool(
argstr="--wm", desc="set match vals to 2 and 41 (aseg for cerebral WM)"
)
ventricles = traits.Bool(
argstr="--ventricles",
desc="set match vals those for aseg ventricles+choroid (not 4th)",
)
wm_ven_csf = traits.Bool(
argstr="--wm+vcsf",
xor=["min", "max"],
desc="WM and ventricular CSF, including choroid (not 4th)",
)
binary_file = File(argstr="--o %s", genfile=True, desc="binary output volume")
out_type = traits.Enum("nii", "nii.gz", "mgz", argstr="", desc="output file type")
count_file = traits.Either(
traits.Bool,
File,
argstr="--count %s",
desc="save number of hits in ascii file (hits, ntotvox, pct)",
)
bin_val = traits.Int(
argstr="--binval %d", desc="set vox within thresh to val (default is 1)"
)
bin_val_not = traits.Int(
argstr="--binvalnot %d", desc="set vox outside range to val (default is 0)"
)
invert = traits.Bool(argstr="--inv", desc="set binval=0, binvalnot=1")
frame_no = traits.Int(
argstr="--frame %s", desc="use 0-based frame of input (default is 0)"
)
merge_file = File(exists=True, argstr="--merge %s", desc="merge with mergevol")
mask_file = File(exists=True, argstr="--mask maskvol", desc="must be within mask")
mask_thresh = traits.Float(argstr="--mask-thresh %f", desc="set thresh for mask")
abs = traits.Bool(
argstr="--abs", desc="take abs of invol first (ie, make unsigned)"
)
bin_col_num = traits.Bool(
argstr="--bincol", desc="set binarized voxel value to its column number"
)
zero_edges = traits.Bool(argstr="--zero-edges", desc="zero the edge voxels")
zero_slice_edge = traits.Bool(
argstr="--zero-slice-edges", desc="zero the edge slice voxels"
)
dilate = traits.Int(argstr="--dilate %d", desc="niters: dilate binarization in 3D")
erode = traits.Int(
argstr="--erode %d",
desc="nerode: erode binarization in 3D (after any dilation)",
)
erode2d = traits.Int(
argstr="--erode2d %d",
desc="nerode2d: erode binarization in 2D (after any 3D erosion)",
)
class BinarizeOutputSpec(TraitedSpec):
binary_file = File(exists=True, desc="binarized output volume")
count_file = File(desc="ascii file containing number of hits")
class Binarize(FSCommand):
"""Use FreeSurfer mri_binarize to threshold an input volume
Examples
--------
>>> binvol = Binarize(in_file='structural.nii', min=10, binary_file='foo_out.nii')
>>> binvol.cmdline
'mri_binarize --o foo_out.nii --i structural.nii --min 10.000000'
"""
_cmd = "mri_binarize"
input_spec = BinarizeInputSpec
output_spec = BinarizeOutputSpec
def _list_outputs(self):
outputs = self.output_spec().get()
outfile = self.inputs.binary_file
if not isdefined(outfile):
if isdefined(self.inputs.out_type):
outfile = fname_presuffix(
self.inputs.in_file,
newpath=os.getcwd(),
suffix=".".join(("_thresh", self.inputs.out_type)),
use_ext=False,
)
else:
outfile = fname_presuffix(
self.inputs.in_file, newpath=os.getcwd(), suffix="_thresh"
)
outputs["binary_file"] = os.path.abspath(outfile)
value = self.inputs.count_file
if isdefined(value):
if isinstance(value, bool):
if value:
outputs["count_file"] = fname_presuffix(
self.inputs.in_file,
suffix="_count.txt",
newpath=os.getcwd(),
use_ext=False,
)
else:
outputs["count_file"] = value
return outputs
def _format_arg(self, name, spec, value):
if name == "count_file":
if isinstance(value, bool):
fname = self._list_outputs()[name]
else:
fname = value
return spec.argstr % fname
if name == "out_type":
return ""
return super()._format_arg(name, spec, value)
def _gen_filename(self, name):
if name == "binary_file":
return self._list_outputs()[name]
return None
class ConcatenateInputSpec(FSTraitedSpec):
in_files = InputMultiPath(
File(exists=True),
desc="Individual volumes to be concatenated",
argstr="--i %s...",
mandatory=True,
)
concatenated_file = File(desc="Output volume", argstr="--o %s", genfile=True)
sign = traits.Enum(
"abs",
"pos",
"neg",
argstr="--%s",
desc="Take only pos or neg voxles from input, or take abs",
)
stats = traits.Enum(
"sum",
"var",
"std",
"max",
"min",
"mean",
argstr="--%s",
desc="Compute the sum, var, std, max, min or mean of the input volumes",
)
paired_stats = traits.Enum(
"sum",
"avg",
"diff",
"diff-norm",
"diff-norm1",
"diff-norm2",
argstr="--paired-%s",
desc="Compute paired sum, avg, or diff",
)
gmean = traits.Int(
argstr="--gmean %d", desc="create matrix to average Ng groups, Nper=Ntot/Ng"
)
mean_div_n = traits.Bool(
argstr="--mean-div-n", desc="compute mean/nframes (good for var)"
)
multiply_by = traits.Float(
argstr="--mul %f", desc="Multiply input volume by some amount"
)
add_val = traits.Float(
argstr="--add %f", desc="Add some amount to the input volume"
)
multiply_matrix_file = File(
exists=True, argstr="--mtx %s", desc="Multiply input by an ascii matrix in file"
)
combine = traits.Bool(
argstr="--combine", desc="Combine non-zero values into single frame volume"
)
keep_dtype = traits.Bool(
argstr="--keep-datatype", desc="Keep voxelwise precision type (default is float"
)
max_bonfcor = traits.Bool(
argstr="--max-bonfcor",
desc="Compute max and bonferroni correct (assumes -log10(ps))",
)
max_index = traits.Bool(
argstr="--max-index",
desc="Compute the index of max voxel in concatenated volumes",
)
mask_file = File(exists=True, argstr="--mask %s", desc="Mask input with a volume")
vote = traits.Bool(
argstr="--vote",
desc="Most frequent value at each voxel and fraction of occurrences",
)
sort = traits.Bool(argstr="--sort", desc="Sort each voxel by ascending frame value")
class ConcatenateOutputSpec(TraitedSpec):
concatenated_file = File(exists=True, desc="Path/name of the output volume")
class Concatenate(FSCommand):
"""Use Freesurfer mri_concat to combine several input volumes
into one output volume. Can concatenate by frames, or compute
a variety of statistics on the input volumes.
Examples
--------
Combine two input volumes into one volume with two frames
>>> concat = Concatenate()
>>> concat.inputs.in_files = ['cont1.nii', 'cont2.nii']
>>> concat.inputs.concatenated_file = 'bar.nii'
>>> concat.cmdline
'mri_concat --o bar.nii --i cont1.nii --i cont2.nii'
"""
_cmd = "mri_concat"
input_spec = ConcatenateInputSpec
output_spec = ConcatenateOutputSpec
def _list_outputs(self):
outputs = self.output_spec().get()
fname = self.inputs.concatenated_file
if not isdefined(fname):
fname = "concat_output.nii.gz"
outputs["concatenated_file"] = os.path.join(os.getcwd(), fname)
return outputs
def _gen_filename(self, name):
if name == "concatenated_file":
return self._list_outputs()[name]
return None
class SegStatsInputSpec(FSTraitedSpec):
_xor_inputs = ("segmentation_file", "annot", "surf_label")
segmentation_file = File(
exists=True,
argstr="--seg %s",
xor=_xor_inputs,
mandatory=True,
desc="segmentation volume path",
)
annot = traits.Tuple(
traits.Str,
traits.Enum("lh", "rh"),
traits.Str,
argstr="--annot %s %s %s",
xor=_xor_inputs,
mandatory=True,
desc="subject hemi parc : use surface parcellation",
)
surf_label = traits.Tuple(
traits.Str,
traits.Enum("lh", "rh"),
traits.Str,
argstr="--slabel %s %s %s",
xor=_xor_inputs,
mandatory=True,
desc="subject hemi label : use surface label",
)
summary_file = File(
argstr="--sum %s",
genfile=True,
position=-1,
desc="Segmentation stats summary table file",
)
partial_volume_file = File(
exists=True, argstr="--pv %s", desc="Compensate for partial voluming"
)
in_file = File(
exists=True,
argstr="--i %s",
desc="Use the segmentation to report stats on this volume",
)
frame = traits.Int(
argstr="--frame %d", desc="Report stats on nth frame of input volume"
)
multiply = traits.Float(argstr="--mul %f", desc="multiply input by val")
calc_snr = traits.Bool(
argstr="--snr", desc="save mean/std as extra column in output table"
)
calc_power = traits.Enum(
"sqr",
"sqrt",
argstr="--%s",
desc="Compute either the sqr or the sqrt of the input",
)
_ctab_inputs = ("color_table_file", "default_color_table", "gca_color_table")
color_table_file = File(
exists=True,
argstr="--ctab %s",
xor=_ctab_inputs,
desc="color table file with seg id names",
)
default_color_table = traits.Bool(
argstr="--ctab-default",
xor=_ctab_inputs,
desc="use $FREESURFER_HOME/FreeSurferColorLUT.txt",
)
gca_color_table = File(
exists=True,
argstr="--ctab-gca %s",
xor=_ctab_inputs,
desc="get color table from GCA (CMA)",
)
segment_id = traits.List(
argstr="--id %s...", desc="Manually specify segmentation ids"
)
exclude_id = traits.Int(argstr="--excludeid %d", desc="Exclude seg id from report")
exclude_ctx_gm_wm = traits.Bool(
argstr="--excl-ctxgmwm", desc="exclude cortical gray and white matter"
)
wm_vol_from_surf = traits.Bool(
argstr="--surf-wm-vol", desc="Compute wm volume from surf"
)
cortex_vol_from_surf = traits.Bool(
argstr="--surf-ctx-vol", desc="Compute cortex volume from surf"
)
non_empty_only = traits.Bool(
argstr="--nonempty", desc="Only report nonempty segmentations"
)
empty = traits.Bool(
argstr="--empty", desc="Report on segmentations listed in the color table"
)
mask_file = File(
exists=True, argstr="--mask %s", desc="Mask volume (same size as seg"
)
mask_thresh = traits.Float(
argstr="--maskthresh %f", desc="binarize mask with this threshold <0.5>"
)
mask_sign = traits.Enum(
"abs",
"pos",
"neg",
"--masksign %s",
desc="Sign for mask threshold: pos, neg, or abs",
)
mask_frame = traits.Int(
"--maskframe %d",
requires=["mask_file"],
desc="Mask with this (0 based) frame of the mask volume",
)
mask_invert = traits.Bool(
argstr="--maskinvert", desc="Invert binarized mask volume"
)
mask_erode = traits.Int(argstr="--maskerode %d", desc="Erode mask by some amount")
brain_vol = traits.Enum(
"brain-vol-from-seg",
"brainmask",
argstr="--%s",
desc="Compute brain volume either with ``brainmask`` or ``brain-vol-from-seg``",
)
brainmask_file = File(
argstr="--brainmask %s",
exists=True,
desc="Load brain mask and compute the volume of the brain as the non-zero voxels in this volume",
)
etiv = traits.Bool(argstr="--etiv", desc="Compute ICV from talairach transform")
etiv_only = traits.Enum(
"etiv",
"old-etiv",
"--%s-only",
desc="Compute etiv and exit. Use ``etiv`` or ``old-etiv``",
)
avgwf_txt_file = traits.Either(
traits.Bool,
File,
argstr="--avgwf %s",
desc="Save average waveform into file (bool or filename)",
)
avgwf_file = traits.Either(
traits.Bool,
File,
argstr="--avgwfvol %s",
desc="Save as binary volume (bool or filename)",
)
sf_avg_file = traits.Either(
traits.Bool, File, argstr="--sfavg %s", desc="Save mean across space and time"
)
vox = traits.List(
traits.Int,
argstr="--vox %s",
desc="Replace seg with all 0s except at C R S (three int inputs)",
)
supratent = traits.Bool(argstr="--supratent", desc="Undocumented input flag")
subcort_gm = traits.Bool(
argstr="--subcortgray", desc="Compute volume of subcortical gray matter"
)
total_gray = traits.Bool(
argstr="--totalgray", desc="Compute volume of total gray matter"
)
euler = traits.Bool(
argstr="--euler",
desc="Write out number of defect holes in orig.nofix based on the euler number",
)
in_intensity = File(
argstr="--in %s --in-intensity-name %s", desc="Undocumented input norm.mgz file"
)
intensity_units = traits.Enum(
"MR",
argstr="--in-intensity-units %s",
requires=["in_intensity"],
desc="Intensity units",
)
class SegStatsOutputSpec(TraitedSpec):