We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
RAGEval 评价,使用自己转成的txt作为输入,输出结果为 {}
请提供您执行的主要代码或指令。 / Please provide the main code or commands you executed. 例如 / For example:
generate_testset_task_cfg = { "debug": "true", "eval_backend": "RAGEval", "eval_config": { "tool": "RAGAS", "testset_generation": { "docs": ['./data/metrics.txt'], "test_size": 10, "output_file": "outputs/metrics.json", "knowledge_graph": "outputs/knowledge_graph.json", "generator_llm": { "model_name": "qwen2.5:14B-Instruct", "api_base": "http://localhost:11434/v1/", "api_key": "ollama", }, "embeddings": { "model_name_or_path": "BAAI/bge-large-en-v1.5", }, "language": "english" } }, } %%time import nltk nltk.download('punkt_tab') run_task(task_cfg=generate_testset_task_cfg) 其中,metrics.txt是直接用例子中 [ { "user_input": "第一届奥运会是什么时候举行的?", "retrieved_contexts": [ "第一届现代奥运会于1896年4月6日到4月15日在希腊雅典举行。" ], "response": "第一届现代奥运会于1896年4月6日举行。", "reference": "第一届现代奥运会于1896年4月6日在希腊雅典开幕。" }, { "user_input": "哪位运动员赢得了最多的奥运金牌?", "retrieved_contexts": [ "迈克尔·菲尔普斯是历史上获得奥运金牌最多的运动员,他共赢得了23枚奥运金牌。" ], "response": "迈克尔·菲尔普斯赢得了最多的奥运金牌。", "reference": "迈克尔·菲尔普斯是获得奥运金牌最多的运动员,共赢得23枚金牌。" } ] 转成的txt import json # 从文件中读取 JSON 数据 with open("./data/test_data.json", "r") as file: data = json.load(file) with open("./data/test_data.txt", "w") as file: json.dump(data, file, indent=4) # 使用 json.dump 写入文件,格式化
请粘贴完整的错误日志或控制台输出。 / Please paste the full error log or console output. 例如 / For example:
[nltk_data] Downloading package punkt_tab to [/Users/wendy/nltk_data...](http://localhost:8889/Users/wendy/nltk_data...) [nltk_data] Package punkt_tab is already up-to-date! 2025-01-14 17:59:21,556 - evalscope - INFO - Args: Task config is provided with dictionary type. 2025-01-14 17:59:21,576 - evalscope - INFO - Dump task config to [./outputs/20250114_175921/configs/task_config_387b02.yaml](http://localhost:8889/outputs/20250114_175921/configs/task_config_387b02.yaml) 2025-01-14 17:59:21,588 - evalscope - INFO - { "model": null, "model_id": null, "model_args": { "revision": "master", "precision": "torch.float16", "device": "auto" }, "template_type": null, "chat_template": null, "datasets": [], "dataset_args": {}, "dataset_dir": "[/Users/wendy/.cache/modelscope/datasets](http://localhost:8889/Users/wendy/.cache/modelscope/datasets)", "dataset_hub": "modelscope", "generation_config": { "max_length": 2048, "max_new_tokens": 512, "do_sample": false, "top_k": 50, "top_p": 1.0, "temperature": 1.0 }, "eval_type": "checkpoint", "eval_backend": "RAGEval", "eval_config": { "tool": "RAGAS", "testset_generation": { "docs": [ "[./data/test_data.txt](http://localhost:8889/data/test_data.txt)" ], "test_size": 2, "output_file": "outputs[/testset.json](http://localhost:8889/testset.json)", "knowledge_graph": "outputs[/knowledge_graph.json](http://localhost:8889/knowledge_graph.json)", "generator_llm": { "model_name": "qwen2.5:14B-Instruct", "api_base": "http://localhost:11434/v1/", "api_key": "ollama" }, "embeddings": { "model_name_or_path": "AI-ModelScope/bge-large-zh" }, "language": "chinese" } }, "stage": "all", "limit": null, "mem_cache": false, "use_cache": null, "work_dir": "[./outputs/20250114_175921](http://localhost:8889/outputs/20250114_175921)", "outputs": null, "debug": false, "dry_run": false, "seed": 42, "api_url": null, "api_key": "EMPTY" } 2025-01-14 17:59:21,593 - evalscope - INFO - Check `ragas` Installed 2025-01-14 17:59:21,597 - unstructured - WARNING - libmagic is unavailable but assists in filetype detection. Please consider installing libmagic for better results. 2025-01-14 17:59:21,640 - evalscope - INFO - Loading model AI-ModelScope[/bge-large-zh](http://localhost:8889/bge-large-zh) from modelscope Downloading Model to directory: /Users/wendy/.cache/modelscope/hub/AI-ModelScope/bge-large-zh 2025-01-14 17:59:22,623 - modelscope - WARNING - Using branch: master as version is unstable, use with caution 2025-01-14 17:59:23,084 - sentence_transformers.SentenceTransformer - INFO - Use pytorch device_name: mps 2025-01-14 17:59:23,086 - sentence_transformers.SentenceTransformer - INFO - Load pretrained SentenceTransformer: [/Users/wendy/.cache/modelscope/hub/AI-ModelScope/bge-large-zh](http://localhost:8889/Users/wendy/.cache/modelscope/hub/AI-ModelScope/bge-large-zh) 2025-01-14 17:59:25,952 - ragas.prompt.pydantic_prompt - WARNING - Loaded prompt hash does not match the saved hash. 2025-01-14 17:59:25,953 - evalscope - INFO - Load existing prompts from [/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/HeadlinesExtractor](http://localhost:8889/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/HeadlinesExtractor) 2025-01-14 17:59:25,954 - ragas.prompt.pydantic_prompt - WARNING - Loaded prompt hash does not match the saved hash. 2025-01-14 17:59:25,955 - evalscope - INFO - Load existing prompts from [/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/SummaryExtractor](http://localhost:8889/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/SummaryExtractor) 2025-01-14 17:59:25,956 - ragas.prompt.pydantic_prompt - WARNING - Loaded prompt hash does not match the saved hash. 2025-01-14 17:59:25,956 - evalscope - INFO - Load existing prompts from [/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/ThemesExtractor](http://localhost:8889/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/ThemesExtractor) 2025-01-14 17:59:25,957 - ragas.prompt.pydantic_prompt - WARNING - Loaded prompt hash does not match the saved hash. 2025-01-14 17:59:25,959 - evalscope - INFO - Load existing prompts from [/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/NERExtractor](http://localhost:8889/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/NERExtractor) 2025-01-14 17:59:25,962 - ragas.prompt.pydantic_prompt - WARNING - Loaded prompt hash does not match the saved hash. 2025-01-14 17:59:25,964 - evalscope - INFO - Load existing prompts from [/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/CustomNodeFilter](http://localhost:8889/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/CustomNodeFilter) 2025-01-14 17:59:25,965 - evalscope - INFO - Translate prompts finished 2025-01-14 17:59:25,966 - evalscope - INFO - Loading knowledge graph from outputs[/knowledge_graph.json](http://localhost:8889/knowledge_graph.json) Generating personas: 100% 2/2 [00:10<00:00, 4.56s/it] 2025-01-14 17:59:36,457 - httpx - INFO - HTTP Request: POST http://localhost:11434/v1/chat/completions "HTTP/1.1 200 OK" 2025-01-14 17:59:36,866 - httpx - INFO - HTTP Request: POST http://localhost:11434/v1/chat/completions "HTTP/1.1 200 OK" 2025-01-14 17:59:36,894 - ragas.prompt.pydantic_prompt - WARNING - Loaded prompt hash does not match the saved hash. 2025-01-14 17:59:36,897 - ragas.prompt.pydantic_prompt - WARNING - Loaded prompt hash does not match the saved hash. 2025-01-14 17:59:36,899 - evalscope - INFO - Load existing prompts from [/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/SingleHopSpecificQuerySynthesizer](http://localhost:8889/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/SingleHopSpecificQuerySynthesizer) 2025-01-14 17:59:36,909 - ragas.prompt.pydantic_prompt - WARNING - Loaded prompt hash does not match the saved hash. 2025-01-14 17:59:36,914 - ragas.prompt.pydantic_prompt - WARNING - Loaded prompt hash does not match the saved hash. 2025-01-14 17:59:36,918 - ragas.prompt.pydantic_prompt - WARNING - Loaded prompt hash does not match the saved hash. 2025-01-14 17:59:36,919 - evalscope - INFO - Load existing prompts from [/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/MultiHopAbstractQuerySynthesizer](http://localhost:8889/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/MultiHopAbstractQuerySynthesizer) 2025-01-14 17:59:36,927 - ragas.prompt.pydantic_prompt - WARNING - Loaded prompt hash does not match the saved hash. 2025-01-14 17:59:36,931 - ragas.prompt.pydantic_prompt - WARNING - Loaded prompt hash does not match the saved hash. 2025-01-14 17:59:36,934 - evalscope - INFO - Load existing prompts from [/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/MultiHopSpecificQuerySynthesizer](http://localhost:8889/opt/anaconda3/envs/llm_eval/lib/python3.12/site-packages/evalscope/backend/rag_eval/ragas/prompts/chinese/MultiHopSpecificQuerySynthesizer) 2025-01-14 17:59:36,936 - evalscope - INFO - Translate prompts finished 2025-01-14 17:59:36,939 - ragas.testset.synthesizers.multi_hop.abstract - INFO - found 0 clusters 2025-01-14 17:59:36,939 - ragas.testset.synthesizers.multi_hop.specific - INFO - found 0 clusters Generating Scenarios: 100% 1/1 [00:17<00:00, 17.33s/it] 2025-01-14 17:59:46,380 - httpx - INFO - HTTP Request: POST http://localhost:11434/v1/chat/completions "HTTP/1.1 200 OK" 2025-01-14 17:59:54,255 - httpx - INFO - HTTP Request: POST http://localhost:11434/v1/chat/completions "HTTP/1.1 200 OK" Generating Samples: 0/0 [00:00<?, ?it/s] Generating Answers: 0it [00:00, ?it[/s](http://localhost:8889/s)] CPU times: user 994 ms, sys: 1.17 s, total: 2.16 s Wall time: 33.5 s {}
操作系统 / Operating System:
Python版本 / Python Version:
能否提供一个可供运行的txt文件示例,谢谢
如果有其他相关信息,请在此处提供。 / If there is any other relevant information, please provide it here.
The text was updated successfully, but these errors were encountered:
输入的文档要长一些,不然生成不了问答对
Sorry, something went wrong.
看你提供的代码,是想尝试生成问答对吗,还是只用来做RAG评测
No branches or pull requests
问题描述 / Issue Description
RAGEval 评价,使用自己转成的txt作为输入,输出结果为 {}
使用的工具 / Tools Used
执行的代码或指令 / Code or Commands Executed
请提供您执行的主要代码或指令。 / Please provide the main code or commands you executed. 例如 / For example:
错误日志 / Error Log
请粘贴完整的错误日志或控制台输出。 / Please paste the full error log or console output. 例如 / For example:
运行环境 / Runtime Environment
操作系统 / Operating System:
Python版本 / Python Version:
其他信息 / Additional Information
能否提供一个可供运行的txt文件示例,谢谢
如果有其他相关信息,请在此处提供。 / If there is any other relevant information, please provide it here.
The text was updated successfully, but these errors were encountered: